MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsub Structured version   Visualization version   GIF version

Theorem mulsub 11427
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 11278 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
2 negsub 11278 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + -𝐷) = (𝐶𝐷))
31, 2oveqan12d 7303 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = ((𝐴𝐵) · (𝐶𝐷)))
4 negcl 11230 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
5 negcl 11230 . . . . 5 (𝐷 ∈ ℂ → -𝐷 ∈ ℂ)
6 muladd 11416 . . . . 5 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
75, 6sylanr2 680 . . . 4 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
84, 7sylanl2 678 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
9 mul2neg 11423 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
109ancoms 459 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
1110oveq2d 7300 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
1211ad2ant2l 743 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
13 mulneg2 11421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · -𝐷) = -(𝐴 · 𝐷))
14 mulneg2 11421 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · -𝐵) = -(𝐶 · 𝐵))
1513, 14oveqan12d 7303 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
16 mulcl 10964 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 10964 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
18 negdi 11287 . . . . . . . 8 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
1916, 17, 18syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
2015, 19eqtr4d 2782 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2120ancom2s 647 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2221an42s 658 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2312, 22oveq12d 7302 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))))
24 mulcl 10964 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
25 mulcl 10964 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
2625ancoms 459 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
27 addcl 10962 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2824, 26, 27syl2an 596 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2928an4s 657 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3017ancoms 459 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
31 addcl 10962 . . . . . 6 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3216, 30, 31syl2an 596 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3332an42s 658 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3429, 33negsubd 11347 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
358, 23, 343eqtrd 2783 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
363, 35eqtr3d 2781 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  (class class class)co 7284  cc 10878   + caddc 10883   · cmul 10885  cmin 11214  -cneg 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-ltxr 11023  df-sub 11216  df-neg 11217
This theorem is referenced by:  mulsubd  11443  muleqadd  11628  addltmul  12218  sqabssub  15004  mod2xnegi  16781  addltmulALT  30817
  Copyright terms: Public domain W3C validator