MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsub Structured version   Visualization version   GIF version

Theorem mulsub 11075
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 10926 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
2 negsub 10926 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + -𝐷) = (𝐶𝐷))
31, 2oveqan12d 7167 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = ((𝐴𝐵) · (𝐶𝐷)))
4 negcl 10878 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
5 negcl 10878 . . . . 5 (𝐷 ∈ ℂ → -𝐷 ∈ ℂ)
6 muladd 11064 . . . . 5 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
75, 6sylanr2 681 . . . 4 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
84, 7sylanl2 679 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
9 mul2neg 11071 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
109ancoms 461 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
1110oveq2d 7164 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
1211ad2ant2l 744 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
13 mulneg2 11069 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · -𝐷) = -(𝐴 · 𝐷))
14 mulneg2 11069 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · -𝐵) = -(𝐶 · 𝐵))
1513, 14oveqan12d 7167 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
16 mulcl 10613 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 10613 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
18 negdi 10935 . . . . . . . 8 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
1916, 17, 18syl2an 597 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
2015, 19eqtr4d 2857 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2120ancom2s 648 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2221an42s 659 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2312, 22oveq12d 7166 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))))
24 mulcl 10613 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
25 mulcl 10613 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
2625ancoms 461 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
27 addcl 10611 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2824, 26, 27syl2an 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2928an4s 658 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3017ancoms 461 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
31 addcl 10611 . . . . . 6 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3216, 30, 31syl2an 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3332an42s 659 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3429, 33negsubd 10995 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
358, 23, 343eqtrd 2858 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
363, 35eqtr3d 2856 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  (class class class)co 7148  cc 10527   + caddc 10532   · cmul 10534  cmin 10862  -cneg 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864  df-neg 10865
This theorem is referenced by:  mulsubd  11091  muleqadd  11276  addltmul  11865  sqabssub  14635  mod2xnegi  16399  addltmulALT  30215
  Copyright terms: Public domain W3C validator