![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdrgtps | Structured version Visualization version GIF version |
Description: A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tdrgtps | ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tdrgtrg 22303 | . 2 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | |
2 | trgtps 22300 | . 2 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 TopSpctps 21064 TopRingctrg 22286 TopDRingctdrg 22287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-nul 4984 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-iota 6065 df-fv 6110 df-ov 6882 df-tmd 22203 df-tgp 22204 df-trg 22290 df-tdrg 22291 |
This theorem is referenced by: invrcn 22311 dvrcn 22314 |
Copyright terms: Public domain | W3C validator |