MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtmd2 Structured version   Visualization version   GIF version

Theorem trgtmd2 24198
Description: A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtmd2 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)

Proof of Theorem trgtmd2
StepHypRef Expression
1 trgtgp 24197 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
2 tgptmd 24108 . 2 (𝑅 ∈ TopGrp → 𝑅 ∈ TopMnd)
31, 2syl 17 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  TopMndctmd 24099  TopGrpctgp 24100  TopRingctrg 24185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-tgp 24102  df-trg 24189
This theorem is referenced by:  tdrgtmd  24205  qqhcn  33937
  Copyright terms: Public domain W3C validator