MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtmd2 Structured version   Visualization version   GIF version

Theorem trgtmd2 23427
Description: A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtmd2 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)

Proof of Theorem trgtmd2
StepHypRef Expression
1 trgtgp 23426 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
2 tgptmd 23337 . 2 (𝑅 ∈ TopGrp → 𝑅 ∈ TopMnd)
31, 2syl 17 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  TopMndctmd 23328  TopGrpctgp 23329  TopRingctrg 23414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5251
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-iota 6432  df-fv 6488  df-ov 7341  df-tgp 23331  df-trg 23418
This theorem is referenced by:  tdrgtmd  23434  qqhcn  32239
  Copyright terms: Public domain W3C validator