MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpcn Structured version   Visualization version   GIF version

Theorem tgpcn 23977
Description: In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpcn.1 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
tgpcn (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem tgpcn
StepHypRef Expression
1 tgptmd 23972 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
3 tgpcn.1 . . 3 𝐹 = (+𝑓𝐺)
42, 3tmdcn 23976 . 2 (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
51, 4syl 17 1 (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  TopOpenctopn 17390  +𝑓cplusf 18570   Cn ccn 23117   ×t ctx 23453  TopMndctmd 23963  TopGrpctgp 23964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-tmd 23965  df-tgp 23966
This theorem is referenced by:  pl1cn  33951
  Copyright terms: Public domain W3C validator