Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgpcn | Structured version Visualization version GIF version |
Description: In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpcn.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
tgpcn | ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptmd 22764 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
2 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgpcn.1 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
4 | 2, 3 | tmdcn 22768 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ‘cfv 6328 (class class class)co 7143 TopOpenctopn 16738 +𝑓cplusf 17900 Cn ccn 21909 ×t ctx 22245 TopMndctmd 22755 TopGrpctgp 22756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5169 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ral 3073 df-rex 3074 df-rab 3077 df-v 3409 df-sbc 3694 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-br 5026 df-iota 6287 df-fv 6336 df-ov 7146 df-tmd 22757 df-tgp 22758 |
This theorem is referenced by: pl1cn 31411 |
Copyright terms: Public domain | W3C validator |