MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpcn Structured version   Visualization version   GIF version

Theorem tgpcn 22769
Description: In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpcn.1 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
tgpcn (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem tgpcn
StepHypRef Expression
1 tgptmd 22764 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
3 tgpcn.1 . . 3 𝐹 = (+𝑓𝐺)
42, 3tmdcn 22768 . 2 (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
51, 4syl 17 1 (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  cfv 6328  (class class class)co 7143  TopOpenctopn 16738  +𝑓cplusf 17900   Cn ccn 21909   ×t ctx 22245  TopMndctmd 22755  TopGrpctgp 22756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-nul 5169
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-iota 6287  df-fv 6336  df-ov 7146  df-tmd 22757  df-tgp 22758
This theorem is referenced by:  pl1cn  31411
  Copyright terms: Public domain W3C validator