| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpcn | Structured version Visualization version GIF version | ||
| Description: In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpcn.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| tgpcn | ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptmd 23972 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 2 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tgpcn.1 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
| 4 | 2, 3 | tmdcn 23976 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 TopOpenctopn 17390 +𝑓cplusf 18570 Cn ccn 23117 ×t ctx 23453 TopMndctmd 23963 TopGrpctgp 23964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 df-tmd 23965 df-tgp 23966 |
| This theorem is referenced by: pl1cn 33951 |
| Copyright terms: Public domain | W3C validator |