MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdcn Structured version   Visualization version   GIF version

Theorem tmdcn 23279
Description: In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpcn.1 𝐹 = (+𝑓𝐺)
Assertion
Ref Expression
tmdcn (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem tmdcn
StepHypRef Expression
1 tgpcn.1 . . 3 𝐹 = (+𝑓𝐺)
2 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
31, 2istmd 23270 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
43simp3bi 1147 1 (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  TopOpenctopn 17177  +𝑓cplusf 18368  Mndcmnd 18430  TopSpctps 22126   Cn ccn 22420   ×t ctx 22756  TopMndctmd 23266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310  df-tmd 23268
This theorem is referenced by:  tgpcn  23280  cnmpt1plusg  23283  cnmpt2plusg  23284  tmdcn2  23285  submtmd  23300  tsmsadd  23343  mulrcn  23375  mhmhmeotmd  31922  xrge0pluscn  31935
  Copyright terms: Public domain W3C validator