Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmdcn | Structured version Visualization version GIF version |
Description: In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpcn.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
tmdcn | ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.1 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
2 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | 1, 2 | istmd 23206 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
4 | 3 | simp3bi 1145 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 TopOpenctopn 17113 +𝑓cplusf 18304 Mndcmnd 18366 TopSpctps 22062 Cn ccn 22356 ×t ctx 22692 TopMndctmd 23202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-tmd 23204 |
This theorem is referenced by: tgpcn 23216 cnmpt1plusg 23219 cnmpt2plusg 23220 tmdcn2 23221 submtmd 23236 tsmsadd 23279 mulrcn 23311 mhmhmeotmd 31856 xrge0pluscn 31869 |
Copyright terms: Public domain | W3C validator |