Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmdcn | Structured version Visualization version GIF version |
Description: In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpcn.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
tmdcn | ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.1 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
2 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | 1, 2 | istmd 23323 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
4 | 3 | simp3bi 1146 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 TopOpenctopn 17221 +𝑓cplusf 18412 Mndcmnd 18474 TopSpctps 22179 Cn ccn 22473 ×t ctx 22809 TopMndctmd 23319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-tmd 23321 |
This theorem is referenced by: tgpcn 23333 cnmpt1plusg 23336 cnmpt2plusg 23337 tmdcn2 23338 submtmd 23353 tsmsadd 23396 mulrcn 23428 mhmhmeotmd 32116 xrge0pluscn 32129 |
Copyright terms: Public domain | W3C validator |