Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmdcn | Structured version Visualization version GIF version |
Description: In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpcn.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
tmdcn | ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.1 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
2 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | 1, 2 | istmd 23270 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
4 | 3 | simp3bi 1147 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 TopOpenctopn 17177 +𝑓cplusf 18368 Mndcmnd 18430 TopSpctps 22126 Cn ccn 22420 ×t ctx 22756 TopMndctmd 23266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-tmd 23268 |
This theorem is referenced by: tgpcn 23280 cnmpt1plusg 23283 cnmpt2plusg 23284 tmdcn2 23285 submtmd 23300 tsmsadd 23343 mulrcn 23375 mhmhmeotmd 31922 xrge0pluscn 31935 |
Copyright terms: Public domain | W3C validator |