| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptmd | Structured version Visualization version GIF version | ||
| Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgptmd | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2737 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 24085 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp2bi 1147 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 TopOpenctopn 17466 Grpcgrp 18951 invgcminusg 18952 Cn ccn 23232 TopMndctmd 24078 TopGrpctgp 24079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-tgp 24081 |
| This theorem is referenced by: tgptps 24088 tgpcn 24092 tgpsubcn 24098 tgpmulg 24101 oppgtgp 24106 tgplacthmeo 24111 subgtgp 24113 clsnsg 24118 tgpt0 24127 prdstgpd 24133 tsmssub 24157 tsmsxp 24163 trgtmd2 24177 nlmtlm 24715 qqhcn 33992 |
| Copyright terms: Public domain | W3C validator |