| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptmd | Structured version Visualization version GIF version | ||
| Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgptmd | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23987 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 TopOpenctopn 17320 Grpcgrp 18841 invgcminusg 18842 Cn ccn 23134 TopMndctmd 23980 TopGrpctgp 23981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-tgp 23983 |
| This theorem is referenced by: tgptps 23990 tgpcn 23994 tgpsubcn 24000 tgpmulg 24003 oppgtgp 24008 tgplacthmeo 24013 subgtgp 24015 clsnsg 24020 tgpt0 24029 prdstgpd 24035 tsmssub 24059 tsmsxp 24065 trgtmd2 24079 nlmtlm 24604 qqhcn 33996 |
| Copyright terms: Public domain | W3C validator |