MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 23803
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2732 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2732 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23801 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6543  (class class class)co 7411  TopOpenctopn 17371  Grpcgrp 18855  invgcminusg 18856   Cn ccn 22948  TopMndctmd 23794  TopGrpctgp 23795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-tgp 23797
This theorem is referenced by:  tgptps  23804  tgpcn  23808  tgpsubcn  23814  tgpmulg  23817  oppgtgp  23822  tgplacthmeo  23827  subgtgp  23829  clsnsg  23834  tgpt0  23843  prdstgpd  23849  tsmssub  23873  tsmsxp  23879  trgtmd2  23893  nlmtlm  24431  qqhcn  33257
  Copyright terms: Public domain W3C validator