MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 23983
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2729 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2729 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23981 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6486  (class class class)co 7353  TopOpenctopn 17344  Grpcgrp 18831  invgcminusg 18832   Cn ccn 23128  TopMndctmd 23974  TopGrpctgp 23975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-tgp 23977
This theorem is referenced by:  tgptps  23984  tgpcn  23988  tgpsubcn  23994  tgpmulg  23997  oppgtgp  24002  tgplacthmeo  24007  subgtgp  24009  clsnsg  24014  tgpt0  24023  prdstgpd  24029  tsmssub  24053  tsmsxp  24059  trgtmd2  24073  nlmtlm  24599  qqhcn  33977
  Copyright terms: Public domain W3C validator