MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 24014
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2733 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2733 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 24012 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  cfv 6489  (class class class)co 7355  TopOpenctopn 17332  Grpcgrp 18854  invgcminusg 18855   Cn ccn 23159  TopMndctmd 24005  TopGrpctgp 24006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-tgp 24008
This theorem is referenced by:  tgptps  24015  tgpcn  24019  tgpsubcn  24025  tgpmulg  24028  oppgtgp  24033  tgplacthmeo  24038  subgtgp  24040  clsnsg  24045  tgpt0  24054  prdstgpd  24060  tsmssub  24084  tsmsxp  24090  trgtmd2  24104  nlmtlm  24629  qqhcn  34076
  Copyright terms: Public domain W3C validator