MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 24017
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2735 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2735 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 24015 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6531  (class class class)co 7405  TopOpenctopn 17435  Grpcgrp 18916  invgcminusg 18917   Cn ccn 23162  TopMndctmd 24008  TopGrpctgp 24009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-tgp 24011
This theorem is referenced by:  tgptps  24018  tgpcn  24022  tgpsubcn  24028  tgpmulg  24031  oppgtgp  24036  tgplacthmeo  24041  subgtgp  24043  clsnsg  24048  tgpt0  24057  prdstgpd  24063  tsmssub  24087  tsmsxp  24093  trgtmd2  24107  nlmtlm  24633  qqhcn  34022
  Copyright terms: Public domain W3C validator