Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgptmd | Structured version Visualization version GIF version |
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgptmd | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | istgp 23136 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp2bi 1144 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 TopOpenctopn 17049 Grpcgrp 18492 invgcminusg 18493 Cn ccn 22283 TopMndctmd 23129 TopGrpctgp 23130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-tgp 23132 |
This theorem is referenced by: tgptps 23139 tgpcn 23143 tgpsubcn 23149 tgpmulg 23152 oppgtgp 23157 tgplacthmeo 23162 subgtgp 23164 clsnsg 23169 tgpt0 23178 prdstgpd 23184 tsmssub 23208 tsmsxp 23214 trgtmd2 23228 nlmtlm 23764 qqhcn 31841 |
Copyright terms: Public domain | W3C validator |