MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 23989
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2731 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2731 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23987 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1146 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6476  (class class class)co 7341  TopOpenctopn 17320  Grpcgrp 18841  invgcminusg 18842   Cn ccn 23134  TopMndctmd 23980  TopGrpctgp 23981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-tgp 23983
This theorem is referenced by:  tgptps  23990  tgpcn  23994  tgpsubcn  24000  tgpmulg  24003  oppgtgp  24008  tgplacthmeo  24013  subgtgp  24015  clsnsg  24020  tgpt0  24029  prdstgpd  24035  tsmssub  24059  tsmsxp  24065  trgtmd2  24079  nlmtlm  24604  qqhcn  33996
  Copyright terms: Public domain W3C validator