MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 22302
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2778 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2778 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 22300 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1137 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6137  (class class class)co 6924  TopOpenctopn 16479  Grpcgrp 17820  invgcminusg 17821   Cn ccn 21447  TopMndctmd 22293  TopGrpctgp 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-nul 5027
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-iota 6101  df-fv 6145  df-ov 6927  df-tgp 22296
This theorem is referenced by:  tgptps  22303  tgpcn  22307  tgpsubcn  22313  tgpmulg  22316  oppgtgp  22321  tgplacthmeo  22326  subgtgp  22328  clsnsg  22332  tgpt0  22341  prdstgpd  22347  tsmssub  22371  tsmsxp  22377  trgtmd2  22391  nlmtlm  22917  qqhcn  30641
  Copyright terms: Public domain W3C validator