MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 22792
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2758 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2758 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 22790 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1143 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6340  (class class class)co 7156  TopOpenctopn 16766  Grpcgrp 18182  invgcminusg 18183   Cn ccn 21937  TopMndctmd 22783  TopGrpctgp 22784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-nul 5180
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-iota 6299  df-fv 6348  df-ov 7159  df-tgp 22786
This theorem is referenced by:  tgptps  22793  tgpcn  22797  tgpsubcn  22803  tgpmulg  22806  oppgtgp  22811  tgplacthmeo  22816  subgtgp  22818  clsnsg  22823  tgpt0  22832  prdstgpd  22838  tsmssub  22862  tsmsxp  22868  trgtmd2  22882  nlmtlm  23409  qqhcn  31472
  Copyright terms: Public domain W3C validator