MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptmd Structured version   Visualization version   GIF version

Theorem tgptmd 23575
Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tgptmd (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)

Proof of Theorem tgptmd
StepHypRef Expression
1 eqid 2733 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2733 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23573 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp2bi 1147 1 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6541  (class class class)co 7406  TopOpenctopn 17364  Grpcgrp 18816  invgcminusg 18817   Cn ccn 22720  TopMndctmd 23566  TopGrpctgp 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6493  df-fv 6549  df-ov 7409  df-tgp 23569
This theorem is referenced by:  tgptps  23576  tgpcn  23580  tgpsubcn  23586  tgpmulg  23589  oppgtgp  23594  tgplacthmeo  23599  subgtgp  23601  clsnsg  23606  tgpt0  23615  prdstgpd  23621  tsmssub  23645  tsmsxp  23651  trgtmd2  23665  nlmtlm  24203  qqhcn  32960
  Copyright terms: Public domain W3C validator