| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptmd | Structured version Visualization version GIF version | ||
| Description: A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgptmd | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23964 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 TopOpenctopn 17384 Grpcgrp 18865 invgcminusg 18866 Cn ccn 23111 TopMndctmd 23957 TopGrpctgp 23958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-tgp 23960 |
| This theorem is referenced by: tgptps 23967 tgpcn 23971 tgpsubcn 23977 tgpmulg 23980 oppgtgp 23985 tgplacthmeo 23990 subgtgp 23992 clsnsg 23997 tgpt0 24006 prdstgpd 24012 tsmssub 24036 tsmsxp 24042 trgtmd2 24056 nlmtlm 24582 qqhcn 33981 |
| Copyright terms: Public domain | W3C validator |