![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpinv | Structured version Visualization version GIF version |
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
tgpcn.j | β’ π½ = (TopOpenβπΊ) |
tgpinv.5 | β’ πΌ = (invgβπΊ) |
Ref | Expression |
---|---|
tgpinv | β’ (πΊ β TopGrp β πΌ β (π½ Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | . . 3 β’ π½ = (TopOpenβπΊ) | |
2 | tgpinv.5 | . . 3 β’ πΌ = (invgβπΊ) | |
3 | 1, 2 | istgp 23580 | . 2 β’ (πΊ β TopGrp β (πΊ β Grp β§ πΊ β TopMnd β§ πΌ β (π½ Cn π½))) |
4 | 3 | simp3bi 1147 | 1 β’ (πΊ β TopGrp β πΌ β (π½ Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 TopOpenctopn 17366 Grpcgrp 18818 invgcminusg 18819 Cn ccn 22727 TopMndctmd 23573 TopGrpctgp 23574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-tgp 23576 |
This theorem is referenced by: grpinvhmeo 23589 tgpsubcn 23593 tgpmulg 23596 oppgtgp 23601 subgtgp 23608 prdstgpd 23628 tsmsinv 23651 invrcn2 23683 |
Copyright terms: Public domain | W3C validator |