MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpinv Structured version   Visualization version   GIF version

Theorem tgpinv 23899
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
tgpinv (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))

Proof of Theorem tgpinv
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2istgp 23891 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
43simp3bi 1144 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6533  (class class class)co 7401  TopOpenctopn 17363  Grpcgrp 18850  invgcminusg 18851   Cn ccn 23038  TopMndctmd 23884  TopGrpctgp 23885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-tgp 23887
This theorem is referenced by:  grpinvhmeo  23900  tgpsubcn  23904  tgpmulg  23907  oppgtgp  23912  subgtgp  23919  prdstgpd  23939  tsmsinv  23962  invrcn2  23994
  Copyright terms: Public domain W3C validator