| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpinv | Structured version Visualization version GIF version | ||
| Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| tgpinv | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23971 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 4 | 3 | simp3bi 1147 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 TopOpenctopn 17391 Grpcgrp 18872 invgcminusg 18873 Cn ccn 23118 TopMndctmd 23964 TopGrpctgp 23965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-tgp 23967 |
| This theorem is referenced by: grpinvhmeo 23980 tgpsubcn 23984 tgpmulg 23987 oppgtgp 23992 subgtgp 23999 prdstgpd 24019 tsmsinv 24042 invrcn2 24074 |
| Copyright terms: Public domain | W3C validator |