MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpinv Structured version   Visualization version   GIF version

Theorem tgpinv 23588
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpenβ€˜πΊ)
tgpinv.5 𝐼 = (invgβ€˜πΊ)
Assertion
Ref Expression
tgpinv (𝐺 ∈ TopGrp β†’ 𝐼 ∈ (𝐽 Cn 𝐽))

Proof of Theorem tgpinv
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpenβ€˜πΊ)
2 tgpinv.5 . . 3 𝐼 = (invgβ€˜πΊ)
31, 2istgp 23580 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
43simp3bi 1147 1 (𝐺 ∈ TopGrp β†’ 𝐼 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  TopOpenctopn 17366  Grpcgrp 18818  invgcminusg 18819   Cn ccn 22727  TopMndctmd 23573  TopGrpctgp 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-tgp 23576
This theorem is referenced by:  grpinvhmeo  23589  tgpsubcn  23593  tgpmulg  23596  oppgtgp  23601  subgtgp  23608  prdstgpd  23628  tsmsinv  23651  invrcn2  23683
  Copyright terms: Public domain W3C validator