MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpinv Structured version   Visualization version   GIF version

Theorem tgpinv 24039
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
tgpinv (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))

Proof of Theorem tgpinv
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2istgp 24031 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
43simp3bi 1147 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  TopOpenctopn 17437  Grpcgrp 18920  invgcminusg 18921   Cn ccn 23178  TopMndctmd 24024  TopGrpctgp 24025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-tgp 24027
This theorem is referenced by:  grpinvhmeo  24040  tgpsubcn  24044  tgpmulg  24047  oppgtgp  24052  subgtgp  24059  prdstgpd  24079  tsmsinv  24102  invrcn2  24134
  Copyright terms: Public domain W3C validator