![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpinv | Structured version Visualization version GIF version |
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
tgpinv | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
3 | 1, 2 | istgp 24106 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
4 | 3 | simp3bi 1147 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 TopOpenctopn 17481 Grpcgrp 18973 invgcminusg 18974 Cn ccn 23253 TopMndctmd 24099 TopGrpctgp 24100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-tgp 24102 |
This theorem is referenced by: grpinvhmeo 24115 tgpsubcn 24119 tgpmulg 24122 oppgtgp 24127 subgtgp 24134 prdstgpd 24154 tsmsinv 24177 invrcn2 24209 |
Copyright terms: Public domain | W3C validator |