MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpinv Structured version   Visualization version   GIF version

Theorem tgpinv 23998
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
tgpinv (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))

Proof of Theorem tgpinv
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2istgp 23990 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
43simp3bi 1147 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  TopOpenctopn 17322  Grpcgrp 18843  invgcminusg 18844   Cn ccn 23137  TopMndctmd 23983  TopGrpctgp 23984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-tgp 23986
This theorem is referenced by:  grpinvhmeo  23999  tgpsubcn  24003  tgpmulg  24006  oppgtgp  24011  subgtgp  24018  prdstgpd  24038  tsmsinv  24061  invrcn2  24093
  Copyright terms: Public domain W3C validator