![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpinv | Structured version Visualization version GIF version |
Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
tgpinv | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
3 | 1, 2 | istgp 24101 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
4 | 3 | simp3bi 1146 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 TopOpenctopn 17468 Grpcgrp 18964 invgcminusg 18965 Cn ccn 23248 TopMndctmd 24094 TopGrpctgp 24095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-tgp 24097 |
This theorem is referenced by: grpinvhmeo 24110 tgpsubcn 24114 tgpmulg 24117 oppgtgp 24122 subgtgp 24129 prdstgpd 24149 tsmsinv 24172 invrcn2 24204 |
Copyright terms: Public domain | W3C validator |