| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpinv | Structured version Visualization version GIF version | ||
| Description: In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| tgpinv | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23993 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ (𝐽 Cn 𝐽))) |
| 4 | 3 | simp3bi 1147 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 TopOpenctopn 17327 Grpcgrp 18848 invgcminusg 18849 Cn ccn 23140 TopMndctmd 23986 TopGrpctgp 23987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-tgp 23989 |
| This theorem is referenced by: grpinvhmeo 24002 tgpsubcn 24006 tgpmulg 24009 oppgtgp 24014 subgtgp 24021 prdstgpd 24041 tsmsinv 24064 invrcn2 24096 |
| Copyright terms: Public domain | W3C validator |