MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtmd Structured version   Visualization version   GIF version

Theorem trgtmd 24081
Description: The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
trgtmd (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd)

Proof of Theorem trgtmd
StepHypRef Expression
1 istrg.1 . . 3 𝑀 = (mulGrp‘𝑅)
21istrg 24080 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))
32simp3bi 1147 1 (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  mulGrpcmgp 20059  Ringcrg 20152  TopMndctmd 23986  TopGrpctgp 23987  TopRingctrg 24072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-trg 24076
This theorem is referenced by:  mulrcn  24095  cnmpt1mulr  24098  cnmpt2mulr  24099  nrgtdrg  24609  iistmd  33913
  Copyright terms: Public domain W3C validator