MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtmd Structured version   Visualization version   GIF version

Theorem trgtmd 23316
Description: The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
istrg.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
trgtmd (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd)

Proof of Theorem trgtmd
StepHypRef Expression
1 istrg.1 . . 3 𝑀 = (mulGrp‘𝑅)
21istrg 23315 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))
32simp3bi 1146 1 (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  mulGrpcmgp 19720  Ringcrg 19783  TopMndctmd 23221  TopGrpctgp 23222  TopRingctrg 23307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-trg 23311
This theorem is referenced by:  mulrcn  23330  cnmpt1mulr  23333  cnmpt2mulr  23334  nrgtdrg  23857  iistmd  31852
  Copyright terms: Public domain W3C validator