| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trgtmd | Structured version Visualization version GIF version | ||
| Description: The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| trgtmd | ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | 1 | istrg 24118 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) |
| 3 | 2 | simp3bi 1147 | 1 ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 mulGrpcmgp 20105 Ringcrg 20198 TopMndctmd 24024 TopGrpctgp 24025 TopRingctrg 24110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-trg 24114 |
| This theorem is referenced by: mulrcn 24133 cnmpt1mulr 24136 cnmpt2mulr 24137 nrgtdrg 24650 iistmd 33860 |
| Copyright terms: Public domain | W3C validator |