| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1mulr | Structured version Visualization version GIF version | ||
| Description: Continuity of ring multiplication; analogue of cnmpt12f 23584 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mulrcn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
| cnmpt1mulr.t | ⊢ · = (.r‘𝑅) |
| cnmpt1mulr.r | ⊢ (𝜑 → 𝑅 ∈ TopRing) |
| cnmpt1mulr.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
| cnmpt1mulr.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
| cnmpt1mulr.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt1mulr | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | mulrcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 3 | 1, 2 | mgptopn 20070 | . 2 ⊢ 𝐽 = (TopOpen‘(mulGrp‘𝑅)) |
| 4 | cnmpt1mulr.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 5 | 1, 4 | mgpplusg 20066 | . 2 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 6 | cnmpt1mulr.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ TopRing) | |
| 7 | 1 | trgtmd 24083 | . . 3 ⊢ (𝑅 ∈ TopRing → (mulGrp‘𝑅) ∈ TopMnd) |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ TopMnd) |
| 9 | cnmpt1mulr.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
| 10 | cnmpt1mulr.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
| 11 | cnmpt1mulr.b | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
| 12 | 3, 5, 8, 9, 10, 11 | cnmpt1plusg 24005 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 .rcmulr 17166 TopOpenctopn 17329 mulGrpcmgp 20062 TopOnctopon 22828 Cn ccn 23142 TopMndctmd 23988 TopRingctrg 24074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-tset 17184 df-rest 17330 df-topn 17331 df-topgen 17351 df-plusf 18551 df-mgp 20063 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-tx 23480 df-tmd 23990 df-trg 24078 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |