![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgtdrg | Structured version Visualization version GIF version |
Description: A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nrgtdrg | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgtrg 24732 | . . 3 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopRing) |
3 | simpr 484 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing) | |
4 | nrgring 24705 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ Ring) |
6 | eqid 2740 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
7 | eqid 2740 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) | |
8 | 6, 7 | unitgrp 20409 | . . . 4 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
10 | eqid 2740 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | 10 | trgtmd 24194 | . . . . 5 ⊢ (𝑅 ∈ TopRing → (mulGrp‘𝑅) ∈ TopMnd) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (mulGrp‘𝑅) ∈ TopMnd) |
13 | 6, 10 | unitsubm 20412 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) |
14 | 5, 13 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) |
15 | 7 | submtmd 24133 | . . . 4 ⊢ (((mulGrp‘𝑅) ∈ TopMnd ∧ (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd) |
16 | 12, 14, 15 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd) |
17 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | eqid 2740 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
19 | eqid 2740 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
20 | 17, 6, 18, 19 | nrginvrcn 24734 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (invr‘𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅)))) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (invr‘𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅)))) |
22 | 10, 19 | mgptopn 20173 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅)) |
23 | 7, 22 | resstopn 23215 | . . . 4 ⊢ ((TopOpen‘𝑅) ↾t (Unit‘𝑅)) = (TopOpen‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
24 | 6, 7, 18 | invrfval 20415 | . . . 4 ⊢ (invr‘𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
25 | 23, 24 | istgp 24106 | . . 3 ⊢ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd ∧ (invr‘𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅))))) |
26 | 9, 16, 21, 25 | syl3anbrc 1343 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp) |
27 | 10, 6 | istdrg 24195 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp)) |
28 | 2, 3, 26, 27 | syl3anbrc 1343 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 ↾t crest 17480 TopOpenctopn 17481 SubMndcsubmnd 18817 Grpcgrp 18973 mulGrpcmgp 20161 Ringcrg 20260 Unitcui 20381 invrcinvr 20413 DivRingcdr 20751 Cn ccn 23253 TopMndctmd 24099 TopGrpctgp 24100 TopRingctrg 24185 TopDRingctdrg 24186 NrmRingcnrg 24613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-subrng 20572 df-subrg 20597 df-abv 20832 df-lmod 20882 df-scaf 20883 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-tmd 24101 df-tgp 24102 df-trg 24189 df-tdrg 24190 df-xms 24351 df-ms 24352 df-tms 24353 df-nm 24616 df-ngp 24617 df-nrg 24619 df-nlm 24620 |
This theorem is referenced by: nvctvc 24742 |
Copyright terms: Public domain | W3C validator |