MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgtdrg Structured version   Visualization version   GIF version

Theorem nrgtdrg 22995
Description: A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
Assertion
Ref Expression
nrgtdrg ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing)

Proof of Theorem nrgtdrg
StepHypRef Expression
1 nrgtrg 22992 . . 3 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
21adantr 473 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopRing)
3 simpr 477 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
4 nrgring 22965 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
54adantr 473 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ Ring)
6 eqid 2772 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
7 eqid 2772 . . . . 5 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
86, 7unitgrp 19130 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
95, 8syl 17 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
10 eqid 2772 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1110trgtmd 22466 . . . . 5 (𝑅 ∈ TopRing → (mulGrp‘𝑅) ∈ TopMnd)
122, 11syl 17 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (mulGrp‘𝑅) ∈ TopMnd)
136, 10unitsubm 19133 . . . . 5 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
145, 13syl 17 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
157submtmd 22406 . . . 4 (((mulGrp‘𝑅) ∈ TopMnd ∧ (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd)
1612, 14, 15syl2anc 576 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd)
17 eqid 2772 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
18 eqid 2772 . . . . 5 (invr𝑅) = (invr𝑅)
19 eqid 2772 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
2017, 6, 18, 19nrginvrcn 22994 . . . 4 (𝑅 ∈ NrmRing → (invr𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅))))
2120adantr 473 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (invr𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅))))
2210, 19mgptopn 18961 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅))
237, 22resstopn 21488 . . . 4 ((TopOpen‘𝑅) ↾t (Unit‘𝑅)) = (TopOpen‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
246, 7, 18invrfval 19136 . . . 4 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
2523, 24istgp 22379 . . 3 (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd ∧ (invr𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅)))))
269, 16, 21, 25syl3anbrc 1323 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp)
2710, 6istdrg 22467 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
282, 3, 26, 27syl3anbrc 1323 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wcel 2048  cfv 6182  (class class class)co 6970  Basecbs 16329  s cress 16330  t crest 16540  TopOpenctopn 16541  SubMndcsubmnd 17792  Grpcgrp 17881  mulGrpcmgp 18952  Ringcrg 19010  Unitcui 19102  invrcinvr 19134  DivRingcdr 19215   Cn ccn 21526  TopMndctmd 22372  TopGrpctgp 22373  TopRingctrg 22457  TopDRingctdrg 22458  NrmRingcnrg 22882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-plusf 17699  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mulg 18002  df-subg 18050  df-cntz 18208  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-invr 19135  df-subrg 19246  df-abv 19300  df-lmod 19348  df-scaf 19349  df-sra 19656  df-rgmod 19657  df-nzr 19742  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cn 21529  df-cnp 21530  df-tx 21864  df-hmeo 22057  df-tmd 22374  df-tgp 22375  df-trg 22461  df-tdrg 22462  df-xms 22623  df-ms 22624  df-tms 22625  df-nm 22885  df-ngp 22886  df-nrg 22888  df-nlm 22889
This theorem is referenced by:  nvctvc  23002
  Copyright terms: Public domain W3C validator