MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgtdrg Structured version   Visualization version   GIF version

Theorem nrgtdrg 24735
Description: A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
Assertion
Ref Expression
nrgtdrg ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing)

Proof of Theorem nrgtdrg
StepHypRef Expression
1 nrgtrg 24732 . . 3 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
21adantr 480 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopRing)
3 simpr 484 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
4 nrgring 24705 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
54adantr 480 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ Ring)
6 eqid 2740 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
7 eqid 2740 . . . . 5 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
86, 7unitgrp 20409 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
95, 8syl 17 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
10 eqid 2740 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1110trgtmd 24194 . . . . 5 (𝑅 ∈ TopRing → (mulGrp‘𝑅) ∈ TopMnd)
122, 11syl 17 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (mulGrp‘𝑅) ∈ TopMnd)
136, 10unitsubm 20412 . . . . 5 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
145, 13syl 17 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
157submtmd 24133 . . . 4 (((mulGrp‘𝑅) ∈ TopMnd ∧ (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd)
1612, 14, 15syl2anc 583 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd)
17 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
18 eqid 2740 . . . . 5 (invr𝑅) = (invr𝑅)
19 eqid 2740 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
2017, 6, 18, 19nrginvrcn 24734 . . . 4 (𝑅 ∈ NrmRing → (invr𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅))))
2120adantr 480 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → (invr𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅))))
2210, 19mgptopn 20173 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅))
237, 22resstopn 23215 . . . 4 ((TopOpen‘𝑅) ↾t (Unit‘𝑅)) = (TopOpen‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
246, 7, 18invrfval 20415 . . . 4 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
2523, 24istgp 24106 . . 3 (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopMnd ∧ (invr𝑅) ∈ (((TopOpen‘𝑅) ↾t (Unit‘𝑅)) Cn ((TopOpen‘𝑅) ↾t (Unit‘𝑅)))))
269, 16, 21, 25syl3anbrc 1343 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp)
2710, 6istdrg 24195 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ TopGrp))
282, 3, 26, 27syl3anbrc 1343 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ TopDRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  t crest 17480  TopOpenctopn 17481  SubMndcsubmnd 18817  Grpcgrp 18973  mulGrpcmgp 20161  Ringcrg 20260  Unitcui 20381  invrcinvr 20413  DivRingcdr 20751   Cn ccn 23253  TopMndctmd 24099  TopGrpctgp 24100  TopRingctrg 24185  TopDRingctdrg 24186  NrmRingcnrg 24613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-abv 20832  df-lmod 20882  df-scaf 20883  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-tmd 24101  df-tgp 24102  df-trg 24189  df-tdrg 24190  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620
This theorem is referenced by:  nvctvc  24742
  Copyright terms: Public domain W3C validator