MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2mulr Structured version   Visualization version   GIF version

Theorem cnmpt2mulr 24077
Description: Continuity of ring multiplication; analogue of cnmpt22f 23569 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mulrcn.j 𝐽 = (TopOpen‘𝑅)
cnmpt1mulr.t · = (.r𝑅)
cnmpt1mulr.r (𝜑𝑅 ∈ TopRing)
cnmpt1mulr.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2mulr.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2mulr.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2mulr.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2mulr (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2mulr
StepHypRef Expression
1 eqid 2730 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 mulrcn.j . . 3 𝐽 = (TopOpen‘𝑅)
31, 2mgptopn 20064 . 2 𝐽 = (TopOpen‘(mulGrp‘𝑅))
4 cnmpt1mulr.t . . 3 · = (.r𝑅)
51, 4mgpplusg 20060 . 2 · = (+g‘(mulGrp‘𝑅))
6 cnmpt1mulr.r . . 3 (𝜑𝑅 ∈ TopRing)
71trgtmd 24059 . . 3 (𝑅 ∈ TopRing → (mulGrp‘𝑅) ∈ TopMnd)
86, 7syl 17 . 2 (𝜑 → (mulGrp‘𝑅) ∈ TopMnd)
9 cnmpt1mulr.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑋))
10 cnmpt2mulr.l . 2 (𝜑𝐿 ∈ (TopOn‘𝑌))
11 cnmpt2mulr.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
12 cnmpt2mulr.b . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
133, 5, 8, 9, 10, 11, 12cnmpt2plusg 23982 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cmpo 7392  .rcmulr 17228  TopOpenctopn 17391  mulGrpcmgp 20056  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  TopMndctmd 23964  TopRingctrg 24050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-tset 17246  df-rest 17392  df-topn 17393  df-topgen 17413  df-plusf 18573  df-mgp 20057  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-tx 23456  df-tmd 23966  df-trg 24054
This theorem is referenced by:  dvrcn  24078
  Copyright terms: Public domain W3C validator