| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iistmd | Structured version Visualization version GIF version | ||
| Description: The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
| Ref | Expression |
|---|---|
| df-iis | ⊢ 𝐼 = ((mulGrp‘ℂfld) ↾s (0[,]1)) |
| Ref | Expression |
|---|---|
| iistmd | ⊢ 𝐼 ∈ TopMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24698 | . . 3 ⊢ ℂfld ∈ NrmRing | |
| 2 | nrgtrg 24608 | . . 3 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ TopRing) | |
| 3 | eqid 2733 | . . . 4 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 4 | 3 | trgtmd 24083 | . . 3 ⊢ (ℂfld ∈ TopRing → (mulGrp‘ℂfld) ∈ TopMnd) |
| 5 | 1, 2, 4 | mp2b 10 | . 2 ⊢ (mulGrp‘ℂfld) ∈ TopMnd |
| 6 | unitsscn 13404 | . . 3 ⊢ (0[,]1) ⊆ ℂ | |
| 7 | 1elunit 13374 | . . 3 ⊢ 1 ∈ (0[,]1) | |
| 8 | iimulcl 24863 | . . . 4 ⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (𝑥 · 𝑦) ∈ (0[,]1)) | |
| 9 | 8 | rgen2 3173 | . . 3 ⊢ ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) |
| 10 | nrgring 24581 | . . . . 5 ⊢ (ℂfld ∈ NrmRing → ℂfld ∈ Ring) | |
| 11 | 3 | ringmgp 20161 | . . . . 5 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
| 12 | 1, 10, 11 | mp2b 10 | . . . 4 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
| 13 | cnfldbas 21299 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 14 | 3, 13 | mgpbas 20067 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 15 | cnfld1 21334 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
| 16 | 3, 15 | ringidval 20105 | . . . . 5 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
| 17 | cnfldmul 21303 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
| 18 | 3, 17 | mgpplusg 20066 | . . . . 5 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 19 | 14, 16, 18 | issubm 18715 | . . . 4 ⊢ ((mulGrp‘ℂfld) ∈ Mnd → ((0[,]1) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1) ∧ ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1)))) |
| 20 | 12, 19 | ax-mp 5 | . . 3 ⊢ ((0[,]1) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1) ∧ ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1))) |
| 21 | 6, 7, 9, 20 | mpbir3an 1342 | . 2 ⊢ (0[,]1) ∈ (SubMnd‘(mulGrp‘ℂfld)) |
| 22 | df-iis | . . 3 ⊢ 𝐼 = ((mulGrp‘ℂfld) ↾s (0[,]1)) | |
| 23 | 22 | submtmd 24022 | . 2 ⊢ (((mulGrp‘ℂfld) ∈ TopMnd ∧ (0[,]1) ∈ (SubMnd‘(mulGrp‘ℂfld))) → 𝐼 ∈ TopMnd) |
| 24 | 5, 21, 23 | mp2an 692 | 1 ⊢ 𝐼 ∈ TopMnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 0cc0 11015 1c1 11016 · cmul 11020 [,]cicc 13252 ↾s cress 17145 Mndcmnd 18646 SubMndcsubmnd 18694 mulGrpcmgp 20062 Ringcrg 20155 ℂfldccnfld 21295 TopMndctmd 23988 TopRingctrg 24074 NrmRingcnrg 24497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-plusf 18551 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20465 df-subrg 20489 df-abv 20728 df-lmod 20799 df-scaf 20800 df-sra 21111 df-rgmod 21112 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-cnp 23146 df-tx 23480 df-hmeo 23673 df-tmd 23990 df-tgp 23991 df-trg 24078 df-xms 24238 df-ms 24239 df-tms 24240 df-nm 24500 df-ngp 24501 df-nrg 24503 df-nlm 24504 |
| This theorem is referenced by: xrge0iifmhm 33975 xrge0pluscn 33976 xrge0tmd 33981 |
| Copyright terms: Public domain | W3C validator |