Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem2 Structured version   Visualization version   GIF version

Theorem setrec2lem2 46400
Description: Lemma for setrec2 46401. The functional part of 𝐹 is a function. (Contributed by Emmett Weisz, 6-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem setrec2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relres 5920 . 2 Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2 fvex 6787 . . . . 5 (𝐹𝑥) ∈ V
3 eqeq2 2750 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑦 = 𝑧𝑦 = (𝐹𝑥)))
43imbi2d 341 . . . . . 6 (𝑧 = (𝐹𝑥) → ((𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
54albidv 1923 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ ∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
62, 5spcev 3545 . . . 4 (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥)) → ∃𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧))
7 vex 3436 . . . . . 6 𝑦 ∈ V
87brresi 5900 . . . . 5 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 ↔ (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦))
9 abid 2719 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
10 tz6.12-1 6796 . . . . . . . 8 ((𝑥𝐹𝑦 ∧ ∃!𝑦 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
1110ancoms 459 . . . . . . 7 ((∃!𝑦 𝑥𝐹𝑦𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
129, 11sylanb 581 . . . . . 6 ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
1312eqcomd 2744 . . . . 5 ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → 𝑦 = (𝐹𝑥))
148, 13sylbi 216 . . . 4 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))
156, 14mpg 1800 . . 3 𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
1615ax-gen 1798 . 2 𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
17 nfcv 2907 . . . 4 𝑥𝐹
18 nfab1 2909 . . . 4 𝑥{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
1917, 18nfres 5893 . . 3 𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
20 nfcv 2907 . . . 4 𝑦𝐹
21 nfeu1 2588 . . . . 5 𝑦∃!𝑦 𝑥𝐹𝑦
2221nfab 2913 . . . 4 𝑦{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
2320, 22nfres 5893 . . 3 𝑦(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
24 nfcv 2907 . . 3 𝑧(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2519, 23, 24dffun3f 46388 . 2 (Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ↔ (Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ∧ ∀𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)))
261, 16, 25mpbir2an 708 1 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  {cab 2715   class class class wbr 5074  cres 5591  Rel wrel 5594  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  setrec2  46401
  Copyright terms: Public domain W3C validator