Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem2 Structured version   Visualization version   GIF version

Theorem setrec2lem2 47826
Description: Lemma for setrec2 47827. The functional part of 𝐹 is a function. (Contributed by Emmett Weisz, 6-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem setrec2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relres 6009 . 2 Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2 fvex 6903 . . . . 5 (𝐹𝑥) ∈ V
3 eqeq2 2742 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑦 = 𝑧𝑦 = (𝐹𝑥)))
43imbi2d 339 . . . . . 6 (𝑧 = (𝐹𝑥) → ((𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
54albidv 1921 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ ∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
62, 5spcev 3595 . . . 4 (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥)) → ∃𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧))
7 vex 3476 . . . . . 6 𝑦 ∈ V
87brresi 5989 . . . . 5 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 ↔ (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦))
9 abid 2711 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
10 tz6.12-1 6913 . . . . . . . 8 ((𝑥𝐹𝑦 ∧ ∃!𝑦 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
1110ancoms 457 . . . . . . 7 ((∃!𝑦 𝑥𝐹𝑦𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
129, 11sylanb 579 . . . . . 6 ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
1312eqcomd 2736 . . . . 5 ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → 𝑦 = (𝐹𝑥))
148, 13sylbi 216 . . . 4 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))
156, 14mpg 1797 . . 3 𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
1615ax-gen 1795 . 2 𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
17 nfcv 2901 . . . 4 𝑥𝐹
18 nfab1 2903 . . . 4 𝑥{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
1917, 18nfres 5982 . . 3 𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
20 nfcv 2901 . . . 4 𝑦𝐹
21 nfeu1 2580 . . . . 5 𝑦∃!𝑦 𝑥𝐹𝑦
2221nfab 2907 . . . 4 𝑦{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
2320, 22nfres 5982 . . 3 𝑦(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
24 nfcv 2901 . . 3 𝑧(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2519, 23, 24dffun3f 47814 . 2 (Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ↔ (Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ∧ ∀𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)))
261, 16, 25mpbir2an 707 1 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1537   = wceq 1539  wex 1779  wcel 2104  ∃!weu 2560  {cab 2707   class class class wbr 5147  cres 5677  Rel wrel 5680  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-res 5687  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  setrec2  47827
  Copyright terms: Public domain W3C validator