Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem2 Structured version   Visualization version   GIF version

Theorem setrec2lem2 49560
Description: Lemma for setrec2 49561. The functional part of 𝐹 is a function. (Contributed by Emmett Weisz, 6-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem setrec2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relres 5984 . 2 Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2 fvex 6878 . . . . 5 (𝐹𝑥) ∈ V
3 eqeq2 2742 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑦 = 𝑧𝑦 = (𝐹𝑥)))
43imbi2d 340 . . . . . 6 (𝑧 = (𝐹𝑥) → ((𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
54albidv 1920 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ ∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
62, 5spcev 3581 . . . 4 (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥)) → ∃𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧))
7 vex 3459 . . . . . 6 𝑦 ∈ V
87brresi 5967 . . . . 5 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 ↔ (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦))
9 abid 2712 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
10 tz6.12-1 6888 . . . . . . . 8 ((𝑥𝐹𝑦 ∧ ∃!𝑦 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
1110ancoms 458 . . . . . . 7 ((∃!𝑦 𝑥𝐹𝑦𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
129, 11sylanb 581 . . . . . 6 ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
1312eqcomd 2736 . . . . 5 ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → 𝑦 = (𝐹𝑥))
148, 13sylbi 217 . . . 4 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))
156, 14mpg 1797 . . 3 𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
1615ax-gen 1795 . 2 𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
17 nfcv 2893 . . . 4 𝑥𝐹
18 nfab1 2895 . . . 4 𝑥{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
1917, 18nfres 5960 . . 3 𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
20 nfcv 2893 . . . 4 𝑦𝐹
21 nfeu1 2582 . . . . 5 𝑦∃!𝑦 𝑥𝐹𝑦
2221nfab 2899 . . . 4 𝑦{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
2320, 22nfres 5960 . . 3 𝑦(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
24 nfcv 2893 . . 3 𝑧(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2519, 23, 24dffun3f 49548 . 2 (Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ↔ (Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ∧ ∀𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)))
261, 16, 25mpbir2an 711 1 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  {cab 2708   class class class wbr 5115  cres 5648  Rel wrel 5651  Fun wfun 6513  cfv 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-res 5658  df-iota 6472  df-fun 6521  df-fv 6527
This theorem is referenced by:  setrec2  49561
  Copyright terms: Public domain W3C validator