| Step | Hyp | Ref
| Expression |
| 1 | | relres 6003 |
. 2
⊢ Rel
(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) |
| 2 | | fvex 6898 |
. . . . 5
⊢ (𝐹‘𝑥) ∈ V |
| 3 | | eqeq2 2746 |
. . . . . . 7
⊢ (𝑧 = (𝐹‘𝑥) → (𝑦 = 𝑧 ↔ 𝑦 = (𝐹‘𝑥))) |
| 4 | 3 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑥) → ((𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = 𝑧) ↔ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = (𝐹‘𝑥)))) |
| 5 | 4 | albidv 1919 |
. . . . 5
⊢ (𝑧 = (𝐹‘𝑥) → (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = 𝑧) ↔ ∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = (𝐹‘𝑥)))) |
| 6 | 2, 5 | spcev 3589 |
. . . 4
⊢
(∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = (𝐹‘𝑥)) → ∃𝑧∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = 𝑧)) |
| 7 | | vex 3467 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 8 | 7 | brresi 5986 |
. . . . 5
⊢ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 ↔ (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦)) |
| 9 | | abid 2716 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦) |
| 10 | | tz6.12-1 6908 |
. . . . . . . 8
⊢ ((𝑥𝐹𝑦 ∧ ∃!𝑦 𝑥𝐹𝑦) → (𝐹‘𝑥) = 𝑦) |
| 11 | 10 | ancoms 458 |
. . . . . . 7
⊢
((∃!𝑦 𝑥𝐹𝑦 ∧ 𝑥𝐹𝑦) → (𝐹‘𝑥) = 𝑦) |
| 12 | 9, 11 | sylanb 581 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → (𝐹‘𝑥) = 𝑦) |
| 13 | 12 | eqcomd 2740 |
. . . . 5
⊢ ((𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∧ 𝑥𝐹𝑦) → 𝑦 = (𝐹‘𝑥)) |
| 14 | 8, 13 | sylbi 217 |
. . . 4
⊢ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = (𝐹‘𝑥)) |
| 15 | 6, 14 | mpg 1796 |
. . 3
⊢
∃𝑧∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = 𝑧) |
| 16 | 15 | ax-gen 1794 |
. 2
⊢
∀𝑥∃𝑧∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = 𝑧) |
| 17 | | nfcv 2897 |
. . . 4
⊢
Ⅎ𝑥𝐹 |
| 18 | | nfab1 2899 |
. . . 4
⊢
Ⅎ𝑥{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
| 19 | 17, 18 | nfres 5979 |
. . 3
⊢
Ⅎ𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) |
| 20 | | nfcv 2897 |
. . . 4
⊢
Ⅎ𝑦𝐹 |
| 21 | | nfeu1 2586 |
. . . . 5
⊢
Ⅎ𝑦∃!𝑦 𝑥𝐹𝑦 |
| 22 | 21 | nfab 2903 |
. . . 4
⊢
Ⅎ𝑦{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
| 23 | 20, 22 | nfres 5979 |
. . 3
⊢
Ⅎ𝑦(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) |
| 24 | | nfcv 2897 |
. . 3
⊢
Ⅎ𝑧(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) |
| 25 | 19, 23, 24 | dffun3f 49185 |
. 2
⊢ (Fun
(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ↔ (Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ∧ ∀𝑥∃𝑧∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 → 𝑦 = 𝑧))) |
| 26 | 1, 16, 25 | mpbir2an 711 |
1
⊢ Fun
(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) |