| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2778 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2768 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: uneqin 4234 coi2 6206 foima 6735 f1imacnv 6774 fvsnun1 7111 fnsnsplit 7113 phplem2 9109 php3 9113 rankopb 9740 fin4en1 10195 fpwwe2 10529 winacard 10578 mul02lem1 11284 cnegex2 11290 crreczi 14130 hashinf 14237 hashcard 14257 cshw0 14696 cshwn 14699 sqrtneglem 15168 rlimresb 15467 bpoly3 15960 bpoly4 15961 sinhval 16058 coshval 16059 absefib 16102 efieq1re 16103 sadcaddlem 16363 sadaddlem 16372 qus0subgbas 19105 psgnsn 19427 odngen 19484 frlmup3 21732 mat0op 22329 restopnb 23085 cnmpt2t 23583 clmnegneg 25026 ncvspi 25078 volsup2 25528 plypf1 26139 pige3ALT 26451 sineq0 26455 eflog 26507 logef 26512 cxpsqrt 26634 dvcncxp1 26674 cubic2 26780 quart1 26788 asinsinlem 26823 asinsin 26824 2efiatan 26850 pclogsum 27148 lgsneg 27254 vc0 30546 vcm 30548 nvpi 30639 honegneg 31778 opsqrlem6 32117 sto1i 32208 mdexchi 32307 fmptunsnop 32673 preiman0 32683 elrspunidl 33385 cnre2csqlem 33915 itgexpif 34611 subfacp1lem1 35215 rankaltopb 36013 poimirlem23 37683 dvtan 37710 dvasin 37744 heiborlem6 37856 trlcoat 40762 cdlemk54 40997 readvcot 42397 resubid 42442 sn-mul02 42485 iocunico 43244 relintab 43616 rfovcnvf1od 44037 ntrneifv3 44115 ntrneifv4 44118 clsneifv3 44143 clsneifv4 44144 neicvgfv 44154 snunioo1 45552 dvsinexp 45949 dvnprodlem1 45984 itgsubsticclem 46013 stirlinglem1 46112 fourierdlem80 46224 fourierdlem111 46255 sqwvfoura 46266 sqwvfourb 46267 fouriersw 46269 saliinclf 46364 smfco 46840 2oppf 49164 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |