| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2767 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: uneqin 4255 coi2 6239 foima 6780 f1imacnv 6819 fvsnun1 7159 fnsnsplit 7161 phplem2 9175 php3 9179 rankopb 9812 fin4en1 10269 fpwwe2 10603 winacard 10652 mul02lem1 11357 cnegex2 11363 crreczi 14200 hashinf 14307 hashcard 14327 cshw0 14766 cshwn 14769 sqrtneglem 15239 rlimresb 15538 bpoly3 16031 bpoly4 16032 sinhval 16129 coshval 16130 absefib 16173 efieq1re 16174 sadcaddlem 16434 sadaddlem 16443 qus0subgbas 19137 psgnsn 19457 odngen 19514 frlmup3 21716 mat0op 22313 restopnb 23069 cnmpt2t 23567 clmnegneg 25011 ncvspi 25063 volsup2 25513 plypf1 26124 pige3ALT 26436 sineq0 26440 eflog 26492 logef 26497 cxpsqrt 26619 dvcncxp1 26659 cubic2 26765 quart1 26773 asinsinlem 26808 asinsin 26809 2efiatan 26835 pclogsum 27133 lgsneg 27239 vc0 30510 vcm 30512 nvpi 30603 honegneg 31742 opsqrlem6 32081 sto1i 32172 mdexchi 32271 fmptunsnop 32630 preiman0 32640 elrspunidl 33406 cnre2csqlem 33907 itgexpif 34604 subfacp1lem1 35173 rankaltopb 35974 poimirlem23 37644 dvtan 37671 dvasin 37705 heiborlem6 37817 trlcoat 40724 cdlemk54 40959 readvcot 42359 resubid 42404 sn-mul02 42447 iocunico 43207 relintab 43579 rfovcnvf1od 44000 ntrneifv3 44078 ntrneifv4 44081 clsneifv3 44106 clsneifv4 44107 neicvgfv 44117 snunioo1 45517 dvsinexp 45916 dvnprodlem1 45951 itgsubsticclem 45980 stirlinglem1 46079 fourierdlem80 46191 fourierdlem111 46222 sqwvfoura 46233 sqwvfourb 46234 fouriersw 46236 saliinclf 46331 smfco 46807 2oppf 49125 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |