![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2784 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2774 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 |
This theorem is referenced by: uneqin 4277 coi2 6259 foima 6807 f1imacnv 6846 fvsnun1 7176 fnsnsplit 7178 phplem2 9204 php3 9208 phplem4OLD 9216 php3OLD 9220 rankopb 9843 fin4en1 10300 fpwwe2 10634 winacard 10683 mul02lem1 11386 cnegex2 11392 crreczi 14187 hashinf 14291 hashcard 14311 cshw0 14740 cshwn 14743 sqrtneglem 15209 rlimresb 15505 bpoly3 15998 bpoly4 15999 sinhval 16093 coshval 16094 absefib 16137 efieq1re 16138 sadcaddlem 16394 sadaddlem 16403 qus0subgbas 19069 psgnsn 19382 odngen 19439 frlmup3 21346 mat0op 21912 restopnb 22670 cnmpt2t 23168 clmnegneg 24611 ncvspi 24664 volsup2 25113 plypf1 25717 pige3ALT 26020 sineq0 26024 eflog 26076 logef 26081 cxpsqrt 26202 dvcncxp1 26240 cubic2 26342 quart1 26350 asinsinlem 26385 asinsin 26386 2efiatan 26412 pclogsum 26707 lgsneg 26813 vc0 29814 vcm 29816 nvpi 29907 honegneg 31046 opsqrlem6 31385 sto1i 31476 mdexchi 31575 preiman0 31918 elrspunidl 32534 cnre2csqlem 32878 itgexpif 33606 subfacp1lem1 34158 rankaltopb 34939 poimirlem23 36499 dvtan 36526 dvasin 36560 heiborlem6 36672 trlcoat 39582 cdlemk54 39817 resubid 41277 sn-mul02 41309 iocunico 41945 relintab 42319 rfovcnvf1od 42740 ntrneifv3 42818 ntrneifv4 42821 clsneifv3 42846 clsneifv4 42847 neicvgfv 42857 snunioo1 44211 dvsinexp 44613 itgsubsticclem 44677 stirlinglem1 44776 fourierdlem80 44888 fourierdlem111 44919 sqwvfoura 44930 sqwvfourb 44931 fouriersw 44933 saliinclf 45028 smfco 45504 aacllem 47801 |
Copyright terms: Public domain | W3C validator |