| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2766 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: uneqin 4252 coi2 6236 foima 6777 f1imacnv 6816 fvsnun1 7156 fnsnsplit 7158 phplem2 9169 php3 9173 rankopb 9805 fin4en1 10262 fpwwe2 10596 winacard 10645 mul02lem1 11350 cnegex2 11356 crreczi 14193 hashinf 14300 hashcard 14320 cshw0 14759 cshwn 14762 sqrtneglem 15232 rlimresb 15531 bpoly3 16024 bpoly4 16025 sinhval 16122 coshval 16123 absefib 16166 efieq1re 16167 sadcaddlem 16427 sadaddlem 16436 qus0subgbas 19130 psgnsn 19450 odngen 19507 frlmup3 21709 mat0op 22306 restopnb 23062 cnmpt2t 23560 clmnegneg 25004 ncvspi 25056 volsup2 25506 plypf1 26117 pige3ALT 26429 sineq0 26433 eflog 26485 logef 26490 cxpsqrt 26612 dvcncxp1 26652 cubic2 26758 quart1 26766 asinsinlem 26801 asinsin 26802 2efiatan 26828 pclogsum 27126 lgsneg 27232 vc0 30503 vcm 30505 nvpi 30596 honegneg 31735 opsqrlem6 32074 sto1i 32165 mdexchi 32264 fmptunsnop 32623 preiman0 32633 elrspunidl 33399 cnre2csqlem 33900 itgexpif 34597 subfacp1lem1 35166 rankaltopb 35967 poimirlem23 37637 dvtan 37664 dvasin 37698 heiborlem6 37810 trlcoat 40717 cdlemk54 40952 readvcot 42352 resubid 42397 sn-mul02 42440 iocunico 43200 relintab 43572 rfovcnvf1od 43993 ntrneifv3 44071 ntrneifv4 44074 clsneifv3 44099 clsneifv4 44100 neicvgfv 44110 snunioo1 45510 dvsinexp 45909 dvnprodlem1 45944 itgsubsticclem 45973 stirlinglem1 46072 fourierdlem80 46184 fourierdlem111 46215 sqwvfoura 46226 sqwvfourb 46227 fouriersw 46229 saliinclf 46324 smfco 46800 2oppf 49121 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |