Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2790 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2780 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: uneqin 4209 coi2 6156 foima 6677 f1imacnv 6716 fvsnun1 7036 fnsnsplit 7038 phplem4 8895 php3 8899 rankopb 9541 fin4en1 9996 fpwwe2 10330 winacard 10379 mul02lem1 11081 cnegex2 11087 crreczi 13871 hashinf 13977 hashcard 13998 cshw0 14435 cshwn 14438 sqrtneglem 14906 rlimresb 15202 bpoly3 15696 bpoly4 15697 sinhval 15791 coshval 15792 absefib 15835 efieq1re 15836 sadcaddlem 16092 sadaddlem 16101 psgnsn 19043 odngen 19097 frlmup3 20917 mat0op 21476 restopnb 22234 cnmpt2t 22732 clmnegneg 24173 ncvspi 24225 volsup2 24674 plypf1 25278 pige3ALT 25581 sineq0 25585 eflog 25637 logef 25642 cxpsqrt 25763 dvcncxp1 25801 cubic2 25903 quart1 25911 asinsinlem 25946 asinsin 25947 2efiatan 25973 pclogsum 26268 lgsneg 26374 vc0 28837 vcm 28839 nvpi 28930 honegneg 30069 opsqrlem6 30408 sto1i 30499 mdexchi 30598 preiman0 30944 elrspunidl 31508 cnre2csqlem 31762 itgexpif 32486 subfacp1lem1 33041 rankaltopb 34208 poimirlem23 35727 dvtan 35754 dvasin 35788 heiborlem6 35901 trlcoat 38664 cdlemk54 38899 resubid 40312 sn-mul02 40343 iocunico 40958 relintab 41080 rfovcnvf1od 41501 ntrneifv3 41581 ntrneifv4 41584 clsneifv3 41609 clsneifv4 41610 neicvgfv 41620 snunioo1 42940 dvsinexp 43342 itgsubsticclem 43406 stirlinglem1 43505 fourierdlem80 43617 fourierdlem111 43648 sqwvfoura 43659 sqwvfourb 43660 fouriersw 43662 smfco 44223 aacllem 46391 |
Copyright terms: Public domain | W3C validator |