![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2792 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2782 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: uneqin 4308 coi2 6294 foima 6839 f1imacnv 6878 fvsnun1 7216 fnsnsplit 7218 phplem2 9271 php3 9275 phplem4OLD 9283 php3OLD 9287 rankopb 9921 fin4en1 10378 fpwwe2 10712 winacard 10761 mul02lem1 11466 cnegex2 11472 crreczi 14277 hashinf 14384 hashcard 14404 cshw0 14842 cshwn 14845 sqrtneglem 15315 rlimresb 15611 bpoly3 16106 bpoly4 16107 sinhval 16202 coshval 16203 absefib 16246 efieq1re 16247 sadcaddlem 16503 sadaddlem 16512 qus0subgbas 19238 psgnsn 19562 odngen 19619 frlmup3 21843 mat0op 22446 restopnb 23204 cnmpt2t 23702 clmnegneg 25156 ncvspi 25209 volsup2 25659 plypf1 26271 pige3ALT 26580 sineq0 26584 eflog 26636 logef 26641 cxpsqrt 26763 dvcncxp1 26803 cubic2 26909 quart1 26917 asinsinlem 26952 asinsin 26953 2efiatan 26979 pclogsum 27277 lgsneg 27383 vc0 30606 vcm 30608 nvpi 30699 honegneg 31838 opsqrlem6 32177 sto1i 32268 mdexchi 32367 preiman0 32721 elrspunidl 33421 cnre2csqlem 33856 itgexpif 34583 subfacp1lem1 35147 rankaltopb 35943 poimirlem23 37603 dvtan 37630 dvasin 37664 heiborlem6 37776 trlcoat 40680 cdlemk54 40915 resubid 42384 sn-mul02 42416 iocunico 43172 relintab 43545 rfovcnvf1od 43966 ntrneifv3 44044 ntrneifv4 44047 clsneifv3 44072 clsneifv4 44073 neicvgfv 44083 snunioo1 45430 dvsinexp 45832 itgsubsticclem 45896 stirlinglem1 45995 fourierdlem80 46107 fourierdlem111 46138 sqwvfoura 46149 sqwvfourb 46150 fouriersw 46152 saliinclf 46247 smfco 46723 aacllem 48895 |
Copyright terms: Public domain | W3C validator |