![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2783 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2773 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 |
This theorem is referenced by: uneqin 4278 coi2 6262 foima 6810 f1imacnv 6849 fvsnun1 7182 fnsnsplit 7184 phplem2 9211 php3 9215 phplem4OLD 9223 php3OLD 9227 rankopb 9850 fin4en1 10307 fpwwe2 10641 winacard 10690 mul02lem1 11395 cnegex2 11401 crreczi 14196 hashinf 14300 hashcard 14320 cshw0 14749 cshwn 14752 sqrtneglem 15218 rlimresb 15514 bpoly3 16007 bpoly4 16008 sinhval 16102 coshval 16103 absefib 16146 efieq1re 16147 sadcaddlem 16403 sadaddlem 16412 qus0subgbas 19114 psgnsn 19430 odngen 19487 frlmup3 21575 mat0op 22142 restopnb 22900 cnmpt2t 23398 clmnegneg 24852 ncvspi 24905 volsup2 25355 plypf1 25962 pige3ALT 26266 sineq0 26270 eflog 26322 logef 26327 cxpsqrt 26448 dvcncxp1 26488 cubic2 26590 quart1 26598 asinsinlem 26633 asinsin 26634 2efiatan 26660 pclogsum 26955 lgsneg 27061 vc0 30095 vcm 30097 nvpi 30188 honegneg 31327 opsqrlem6 31666 sto1i 31757 mdexchi 31856 preiman0 32199 elrspunidl 32821 cnre2csqlem 33189 itgexpif 33917 subfacp1lem1 34469 rankaltopb 35256 poimirlem23 36815 dvtan 36842 dvasin 36876 heiborlem6 36988 trlcoat 39898 cdlemk54 40133 resubid 41584 sn-mul02 41616 iocunico 42263 relintab 42637 rfovcnvf1od 43058 ntrneifv3 43136 ntrneifv4 43139 clsneifv3 43164 clsneifv4 43165 neicvgfv 43175 snunioo1 44524 dvsinexp 44926 itgsubsticclem 44990 stirlinglem1 45089 fourierdlem80 45201 fourierdlem111 45232 sqwvfoura 45243 sqwvfourb 45244 fouriersw 45246 saliinclf 45341 smfco 45817 aacllem 47936 |
Copyright terms: Public domain | W3C validator |