| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2789 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2779 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 |
| This theorem is referenced by: uneqin 4289 coi2 6283 foima 6825 f1imacnv 6864 fvsnun1 7202 fnsnsplit 7204 phplem2 9245 php3 9249 phplem4OLD 9257 php3OLD 9261 rankopb 9892 fin4en1 10349 fpwwe2 10683 winacard 10732 mul02lem1 11437 cnegex2 11443 crreczi 14267 hashinf 14374 hashcard 14394 cshw0 14832 cshwn 14835 sqrtneglem 15305 rlimresb 15601 bpoly3 16094 bpoly4 16095 sinhval 16190 coshval 16191 absefib 16234 efieq1re 16235 sadcaddlem 16494 sadaddlem 16503 qus0subgbas 19216 psgnsn 19538 odngen 19595 frlmup3 21820 mat0op 22425 restopnb 23183 cnmpt2t 23681 clmnegneg 25137 ncvspi 25190 volsup2 25640 plypf1 26251 pige3ALT 26562 sineq0 26566 eflog 26618 logef 26623 cxpsqrt 26745 dvcncxp1 26785 cubic2 26891 quart1 26899 asinsinlem 26934 asinsin 26935 2efiatan 26961 pclogsum 27259 lgsneg 27365 vc0 30593 vcm 30595 nvpi 30686 honegneg 31825 opsqrlem6 32164 sto1i 32255 mdexchi 32354 fmptunsnop 32709 preiman0 32719 elrspunidl 33456 cnre2csqlem 33909 itgexpif 34621 subfacp1lem1 35184 rankaltopb 35980 poimirlem23 37650 dvtan 37677 dvasin 37711 heiborlem6 37823 trlcoat 40725 cdlemk54 40960 readvcot 42394 resubid 42438 sn-mul02 42470 iocunico 43223 relintab 43596 rfovcnvf1od 44017 ntrneifv3 44095 ntrneifv4 44098 clsneifv3 44123 clsneifv4 44124 neicvgfv 44134 snunioo1 45525 dvsinexp 45926 dvnprodlem1 45961 itgsubsticclem 45990 stirlinglem1 46089 fourierdlem80 46201 fourierdlem111 46232 sqwvfoura 46243 sqwvfourb 46244 fouriersw 46246 saliinclf 46341 smfco 46817 aacllem 49320 |
| Copyright terms: Public domain | W3C validator |