| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2766 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: uneqin 4240 coi2 6212 foima 6741 f1imacnv 6780 fvsnun1 7118 fnsnsplit 7120 phplem2 9119 php3 9123 rankopb 9748 fin4en1 10203 fpwwe2 10537 winacard 10586 mul02lem1 11292 cnegex2 11298 crreczi 14135 hashinf 14242 hashcard 14262 cshw0 14700 cshwn 14703 sqrtneglem 15173 rlimresb 15472 bpoly3 15965 bpoly4 15966 sinhval 16063 coshval 16064 absefib 16107 efieq1re 16108 sadcaddlem 16368 sadaddlem 16377 qus0subgbas 19077 psgnsn 19399 odngen 19456 frlmup3 21707 mat0op 22304 restopnb 23060 cnmpt2t 23558 clmnegneg 25002 ncvspi 25054 volsup2 25504 plypf1 26115 pige3ALT 26427 sineq0 26431 eflog 26483 logef 26488 cxpsqrt 26610 dvcncxp1 26650 cubic2 26756 quart1 26764 asinsinlem 26799 asinsin 26800 2efiatan 26826 pclogsum 27124 lgsneg 27230 vc0 30518 vcm 30520 nvpi 30611 honegneg 31750 opsqrlem6 32089 sto1i 32180 mdexchi 32279 fmptunsnop 32642 preiman0 32652 elrspunidl 33365 cnre2csqlem 33877 itgexpif 34574 subfacp1lem1 35152 rankaltopb 35953 poimirlem23 37623 dvtan 37650 dvasin 37684 heiborlem6 37796 trlcoat 40702 cdlemk54 40937 readvcot 42337 resubid 42382 sn-mul02 42425 iocunico 43184 relintab 43556 rfovcnvf1od 43977 ntrneifv3 44055 ntrneifv4 44058 clsneifv3 44083 clsneifv4 44084 neicvgfv 44094 snunioo1 45493 dvsinexp 45892 dvnprodlem1 45927 itgsubsticclem 45956 stirlinglem1 46055 fourierdlem80 46167 fourierdlem111 46198 sqwvfoura 46209 sqwvfourb 46210 fouriersw 46212 saliinclf 46307 smfco 46783 2oppf 49117 aacllem 49786 |
| Copyright terms: Public domain | W3C validator |