Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2790 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2780 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: uneqin 4212 coi2 6167 foima 6693 f1imacnv 6732 fvsnun1 7054 fnsnsplit 7056 phplem2 8991 php3 8995 phplem4OLD 9003 php3OLD 9007 rankopb 9610 fin4en1 10065 fpwwe2 10399 winacard 10448 mul02lem1 11151 cnegex2 11157 crreczi 13943 hashinf 14049 hashcard 14070 cshw0 14507 cshwn 14510 sqrtneglem 14978 rlimresb 15274 bpoly3 15768 bpoly4 15769 sinhval 15863 coshval 15864 absefib 15907 efieq1re 15908 sadcaddlem 16164 sadaddlem 16173 psgnsn 19128 odngen 19182 frlmup3 21007 mat0op 21568 restopnb 22326 cnmpt2t 22824 clmnegneg 24267 ncvspi 24320 volsup2 24769 plypf1 25373 pige3ALT 25676 sineq0 25680 eflog 25732 logef 25737 cxpsqrt 25858 dvcncxp1 25896 cubic2 25998 quart1 26006 asinsinlem 26041 asinsin 26042 2efiatan 26068 pclogsum 26363 lgsneg 26469 vc0 28936 vcm 28938 nvpi 29029 honegneg 30168 opsqrlem6 30507 sto1i 30598 mdexchi 30697 preiman0 31042 elrspunidl 31606 cnre2csqlem 31860 itgexpif 32586 subfacp1lem1 33141 rankaltopb 34281 poimirlem23 35800 dvtan 35827 dvasin 35861 heiborlem6 35974 trlcoat 38737 cdlemk54 38972 resubid 40391 sn-mul02 40422 iocunico 41042 relintab 41191 rfovcnvf1od 41612 ntrneifv3 41692 ntrneifv4 41695 clsneifv3 41720 clsneifv4 41721 neicvgfv 41731 snunioo1 43050 dvsinexp 43452 itgsubsticclem 43516 stirlinglem1 43615 fourierdlem80 43727 fourierdlem111 43758 sqwvfoura 43769 sqwvfourb 43770 fouriersw 43772 smfco 44336 aacllem 46505 |
Copyright terms: Public domain | W3C validator |