![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2787 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2777 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: uneqin 4295 coi2 6285 foima 6826 f1imacnv 6865 fvsnun1 7202 fnsnsplit 7204 phplem2 9243 php3 9247 phplem4OLD 9255 php3OLD 9259 rankopb 9890 fin4en1 10347 fpwwe2 10681 winacard 10730 mul02lem1 11435 cnegex2 11441 crreczi 14264 hashinf 14371 hashcard 14391 cshw0 14829 cshwn 14832 sqrtneglem 15302 rlimresb 15598 bpoly3 16091 bpoly4 16092 sinhval 16187 coshval 16188 absefib 16231 efieq1re 16232 sadcaddlem 16491 sadaddlem 16500 qus0subgbas 19229 psgnsn 19553 odngen 19610 frlmup3 21838 mat0op 22441 restopnb 23199 cnmpt2t 23697 clmnegneg 25151 ncvspi 25204 volsup2 25654 plypf1 26266 pige3ALT 26577 sineq0 26581 eflog 26633 logef 26638 cxpsqrt 26760 dvcncxp1 26800 cubic2 26906 quart1 26914 asinsinlem 26949 asinsin 26950 2efiatan 26976 pclogsum 27274 lgsneg 27380 vc0 30603 vcm 30605 nvpi 30696 honegneg 31835 opsqrlem6 32174 sto1i 32265 mdexchi 32364 fmptunsnop 32715 preiman0 32725 elrspunidl 33436 cnre2csqlem 33871 itgexpif 34600 subfacp1lem1 35164 rankaltopb 35961 poimirlem23 37630 dvtan 37657 dvasin 37691 heiborlem6 37803 trlcoat 40706 cdlemk54 40941 resubid 42415 sn-mul02 42447 iocunico 43200 relintab 43573 rfovcnvf1od 43994 ntrneifv3 44072 ntrneifv4 44075 clsneifv3 44100 clsneifv4 44101 neicvgfv 44111 snunioo1 45465 dvsinexp 45867 dvnprodlem1 45902 itgsubsticclem 45931 stirlinglem1 46030 fourierdlem80 46142 fourierdlem111 46173 sqwvfoura 46184 sqwvfourb 46185 fouriersw 46187 saliinclf 46282 smfco 46758 aacllem 49032 |
Copyright terms: Public domain | W3C validator |