Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eqtrid 2790 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
5 | 1, 4 | eqtr3d 2780 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: uneqin 4213 coi2 6161 foima 6686 f1imacnv 6725 fvsnun1 7047 fnsnsplit 7049 phplem2 8979 php3 8983 phplem4OLD 8991 php3OLD 8995 rankopb 9598 fin4en1 10053 fpwwe2 10387 winacard 10436 mul02lem1 11139 cnegex2 11145 crreczi 13931 hashinf 14037 hashcard 14058 cshw0 14495 cshwn 14498 sqrtneglem 14966 rlimresb 15262 bpoly3 15756 bpoly4 15757 sinhval 15851 coshval 15852 absefib 15895 efieq1re 15896 sadcaddlem 16152 sadaddlem 16161 psgnsn 19116 odngen 19170 frlmup3 20995 mat0op 21556 restopnb 22314 cnmpt2t 22812 clmnegneg 24255 ncvspi 24308 volsup2 24757 plypf1 25361 pige3ALT 25664 sineq0 25668 eflog 25720 logef 25725 cxpsqrt 25846 dvcncxp1 25884 cubic2 25986 quart1 25994 asinsinlem 26029 asinsin 26030 2efiatan 26056 pclogsum 26351 lgsneg 26457 vc0 28922 vcm 28924 nvpi 29015 honegneg 30154 opsqrlem6 30493 sto1i 30584 mdexchi 30683 preiman0 31028 elrspunidl 31592 cnre2csqlem 31846 itgexpif 32572 subfacp1lem1 33127 rankaltopb 34267 poimirlem23 35786 dvtan 35813 dvasin 35847 heiborlem6 35960 trlcoat 38723 cdlemk54 38958 resubid 40377 sn-mul02 40408 iocunico 41028 relintab 41150 rfovcnvf1od 41571 ntrneifv3 41651 ntrneifv4 41654 clsneifv3 41679 clsneifv4 41680 neicvgfv 41690 snunioo1 43009 dvsinexp 43411 itgsubsticclem 43475 stirlinglem1 43574 fourierdlem80 43686 fourierdlem111 43717 sqwvfoura 43728 sqwvfourb 43729 fouriersw 43731 smfco 44292 aacllem 46461 |
Copyright terms: Public domain | W3C validator |