| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2766 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: uneqin 4248 coi2 6224 foima 6759 f1imacnv 6798 fvsnun1 7138 fnsnsplit 7140 phplem2 9146 php3 9150 rankopb 9781 fin4en1 10238 fpwwe2 10572 winacard 10621 mul02lem1 11326 cnegex2 11332 crreczi 14169 hashinf 14276 hashcard 14296 cshw0 14735 cshwn 14738 sqrtneglem 15208 rlimresb 15507 bpoly3 16000 bpoly4 16001 sinhval 16098 coshval 16099 absefib 16142 efieq1re 16143 sadcaddlem 16403 sadaddlem 16412 qus0subgbas 19106 psgnsn 19426 odngen 19483 frlmup3 21685 mat0op 22282 restopnb 23038 cnmpt2t 23536 clmnegneg 24980 ncvspi 25032 volsup2 25482 plypf1 26093 pige3ALT 26405 sineq0 26409 eflog 26461 logef 26466 cxpsqrt 26588 dvcncxp1 26628 cubic2 26734 quart1 26742 asinsinlem 26777 asinsin 26778 2efiatan 26804 pclogsum 27102 lgsneg 27208 vc0 30476 vcm 30478 nvpi 30569 honegneg 31708 opsqrlem6 32047 sto1i 32138 mdexchi 32237 fmptunsnop 32596 preiman0 32606 elrspunidl 33372 cnre2csqlem 33873 itgexpif 34570 subfacp1lem1 35139 rankaltopb 35940 poimirlem23 37610 dvtan 37637 dvasin 37671 heiborlem6 37783 trlcoat 40690 cdlemk54 40925 readvcot 42325 resubid 42370 sn-mul02 42413 iocunico 43173 relintab 43545 rfovcnvf1od 43966 ntrneifv3 44044 ntrneifv4 44047 clsneifv3 44072 clsneifv4 44073 neicvgfv 44083 snunioo1 45483 dvsinexp 45882 dvnprodlem1 45917 itgsubsticclem 45946 stirlinglem1 46045 fourierdlem80 46157 fourierdlem111 46188 sqwvfoura 46199 sqwvfourb 46200 fouriersw 46202 saliinclf 46297 smfco 46773 2oppf 49094 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |