| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3a | Structured version Visualization version GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2782 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2772 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: uneqin 4264 coi2 6252 foima 6795 f1imacnv 6834 fvsnun1 7174 fnsnsplit 7176 phplem2 9219 php3 9223 php3OLD 9233 rankopb 9866 fin4en1 10323 fpwwe2 10657 winacard 10706 mul02lem1 11411 cnegex2 11417 crreczi 14246 hashinf 14353 hashcard 14373 cshw0 14812 cshwn 14815 sqrtneglem 15285 rlimresb 15581 bpoly3 16074 bpoly4 16075 sinhval 16172 coshval 16173 absefib 16216 efieq1re 16217 sadcaddlem 16476 sadaddlem 16485 qus0subgbas 19181 psgnsn 19501 odngen 19558 frlmup3 21760 mat0op 22357 restopnb 23113 cnmpt2t 23611 clmnegneg 25055 ncvspi 25108 volsup2 25558 plypf1 26169 pige3ALT 26481 sineq0 26485 eflog 26537 logef 26542 cxpsqrt 26664 dvcncxp1 26704 cubic2 26810 quart1 26818 asinsinlem 26853 asinsin 26854 2efiatan 26880 pclogsum 27178 lgsneg 27284 vc0 30555 vcm 30557 nvpi 30648 honegneg 31787 opsqrlem6 32126 sto1i 32217 mdexchi 32316 fmptunsnop 32677 preiman0 32687 elrspunidl 33443 cnre2csqlem 33941 itgexpif 34638 subfacp1lem1 35201 rankaltopb 35997 poimirlem23 37667 dvtan 37694 dvasin 37728 heiborlem6 37840 trlcoat 40742 cdlemk54 40977 readvcot 42407 resubid 42451 sn-mul02 42483 iocunico 43235 relintab 43607 rfovcnvf1od 44028 ntrneifv3 44106 ntrneifv4 44109 clsneifv3 44134 clsneifv4 44135 neicvgfv 44145 snunioo1 45541 dvsinexp 45940 dvnprodlem1 45975 itgsubsticclem 46004 stirlinglem1 46103 fourierdlem80 46215 fourierdlem111 46246 sqwvfoura 46257 sqwvfourb 46258 fouriersw 46260 saliinclf 46355 smfco 46831 2oppf 49080 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |