| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexbOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of unexb 7703 as of 21-Jul-2025. (Contributed by NM, 11-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| unexbOLD | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4120 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | 1 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
| 3 | uneq2 4121 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
| 5 | vex 3448 | . . . 4 ⊢ 𝑥 ∈ V | |
| 6 | vex 3448 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | unex 7700 | . . 3 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 8 | 2, 4, 7 | vtocl2g 3537 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 9 | ssun1 4137 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 10 | ssexg 5273 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
| 11 | 9, 10 | mpan 690 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) |
| 12 | ssun2 4138 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 13 | ssexg 5273 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) | |
| 14 | 12, 13 | mpan 690 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) |
| 15 | 11, 14 | jca 511 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 16 | 8, 15 | impbii 209 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-uni 4868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |