MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexbOLD Structured version   Visualization version   GIF version

Theorem unexbOLD 7785
Description: Obsolete proof of unexb 7784 as of 21-Jul-2025. (Contributed by NM, 11-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unexbOLD ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem unexbOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4184 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21eleq1d 2829 . . 3 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
3 uneq2 4185 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
43eleq1d 2829 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
5 vex 3492 . . . 4 𝑥 ∈ V
6 vex 3492 . . . 4 𝑦 ∈ V
75, 6unex 7781 . . 3 (𝑥𝑦) ∈ V
82, 4, 7vtocl2g 3586 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
9 ssun1 4201 . . . 4 𝐴 ⊆ (𝐴𝐵)
10 ssexg 5341 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
119, 10mpan 689 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
12 ssun2 4202 . . . 4 𝐵 ⊆ (𝐴𝐵)
13 ssexg 5341 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1412, 13mpan 689 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
1511, 14jca 511 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
168, 15impbii 209 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator