MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexb Structured version   Visualization version   GIF version

Theorem unexb 7680
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
Assertion
Ref Expression
unexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem unexb
StepHypRef Expression
1 unexg 7676 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 ssun1 4128 . . . 4 𝐴 ⊆ (𝐴𝐵)
3 ssexg 5261 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
42, 3mpan 690 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
5 ssun2 4129 . . . 4 𝐵 ⊆ (𝐴𝐵)
6 ssexg 5261 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
75, 6mpan 690 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
84, 7jca 511 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
91, 8impbii 209 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Vcvv 3436  cun 3900  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-sn 4577  df-pr 4579  df-uni 4860
This theorem is referenced by:  unexgOLD  7682  sucexb  7737  fodomr  9041  fsuppun  9271  fsuppunbi  9273  djuexb  9802  bj-tagex  37027
  Copyright terms: Public domain W3C validator