MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexb Structured version   Visualization version   GIF version

Theorem unexb 7726
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
Assertion
Ref Expression
unexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem unexb
StepHypRef Expression
1 unexg 7722 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
2 ssun1 4144 . . . 4 𝐴 ⊆ (𝐴𝐵)
3 ssexg 5281 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
42, 3mpan 690 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
5 ssun2 4145 . . . 4 𝐵 ⊆ (𝐴𝐵)
6 ssexg 5281 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
75, 6mpan 690 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
84, 7jca 511 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
91, 8impbii 209 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3450  cun 3915  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by:  unexgOLD  7728  sucexb  7783  fodomr  9098  fsuppun  9345  fsuppunbi  9347  djuexb  9869  bj-tagex  36982
  Copyright terms: Public domain W3C validator