![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexb | Structured version Visualization version GIF version |
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
Ref | Expression |
---|---|
unexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexg 7762 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
2 | ssun1 4188 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
3 | ssexg 5329 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
4 | 2, 3 | mpan 690 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) |
5 | ssun2 4189 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
6 | ssexg 5329 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) | |
7 | 5, 6 | mpan 690 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) |
8 | 4, 7 | jca 511 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
9 | 1, 8 | impbii 209 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: unexgOLD 7768 sucexb 7824 fodomr 9167 fsuppun 9425 fsuppunbi 9427 djuexb 9947 bj-tagex 36970 |
Copyright terms: Public domain | W3C validator |