![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexb | Structured version Visualization version GIF version |
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.) |
Ref | Expression |
---|---|
unexb | ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4155 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
2 | 1 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
3 | uneq2 4156 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
4 | 3 | eleq1d 2814 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
5 | vex 3475 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | vex 3475 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | unex 7748 | . . 3 ⊢ (𝑥 ∪ 𝑦) ∈ V |
8 | 2, 4, 7 | vtocl2g 3560 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
9 | ssun1 4172 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
10 | ssexg 5323 | . . . 4 ⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
11 | 9, 10 | mpan 689 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐴 ∈ V) |
12 | ssun2 4173 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
13 | ssexg 5323 | . . . 4 ⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ∈ V) → 𝐵 ∈ V) | |
14 | 12, 13 | mpan 689 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝐵 ∈ V) |
15 | 11, 14 | jca 511 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
16 | 8, 15 | impbii 208 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4909 |
This theorem is referenced by: unexg 7751 sucexb 7807 fodomr 9152 fsuppun 9410 fsuppunbi 9412 djuexb 9932 bj-tagex 36466 |
Copyright terms: Public domain | W3C validator |