| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotaint | Structured version Visualization version GIF version | ||
| Description: Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| iotaint | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni 6463 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | uniintab 4936 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| 4 | 1, 3 | eqtrd 2768 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃!weu 2565 {cab 2711 ∪ cuni 4858 ∩ cint 4897 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-uni 4859 df-int 4898 df-iota 6442 |
| This theorem is referenced by: aiotaint 47215 |
| Copyright terms: Public domain | W3C validator |