MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaint Structured version   Visualization version   GIF version

Theorem iotaint 6549
Description: Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotaint (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})

Proof of Theorem iotaint
StepHypRef Expression
1 iotauni 6548 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 uniintab 5010 . . 3 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
32biimpi 216 . 2 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
41, 3eqtrd 2780 1 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ∃!weu 2571  {cab 2717   cuni 4931   cint 4970  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-int 4971  df-iota 6525
This theorem is referenced by:  aiotaint  47006
  Copyright terms: Public domain W3C validator