MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaint Structured version   Visualization version   GIF version

Theorem iotaint 6409
Description: Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotaint (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})

Proof of Theorem iotaint
StepHypRef Expression
1 iotauni 6408 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 uniintab 4919 . . 3 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
32biimpi 215 . 2 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
41, 3eqtrd 2778 1 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ∃!weu 2568  {cab 2715   cuni 4839   cint 4879  cio 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-int 4880  df-iota 6391
This theorem is referenced by:  aiotaint  44583
  Copyright terms: Public domain W3C validator