MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn1stprc Structured version   Visualization version   GIF version

Theorem opabn1stprc 7817
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
opabn1stprc (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem opabn1stprc
StepHypRef Expression
1 vex 3405 . . . . . . . 8 𝑥 ∈ V
21biantrur 534 . . . . . . 7 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
32opabbii 5110 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
43dmeqi 5762 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
5 id 22 . . . . . . 7 (∃𝑦𝜑 → ∃𝑦𝜑)
65ralrimivw 3099 . . . . . 6 (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑)
7 dmopab3 5777 . . . . . 6 (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
86, 7sylib 221 . . . . 5 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
94, 8syl5eq 2786 . . . 4 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = V)
10 vprc 5197 . . . . 5 ¬ V ∈ V
1110a1i 11 . . . 4 (∃𝑦𝜑 → ¬ V ∈ V)
129, 11eqneltrd 2853 . . 3 (∃𝑦𝜑 → ¬ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
13 dmexg 7670 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1412, 13nsyl 142 . 2 (∃𝑦𝜑 → ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
15 df-nel 3040 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1614, 15sylibr 237 1 (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wnel 3039  wral 3054  Vcvv 3401  {copab 5105  dom cdm 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-nel 3040  df-ral 3059  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-cnv 5548  df-dm 5550  df-rn 5551
This theorem is referenced by:  griedg0prc  27324
  Copyright terms: Public domain W3C validator