![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn1stprc | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
opabn1stprc | ⊢ (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3467 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | biantrur 529 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
3 | 2 | opabbii 5210 | . . . . . 6 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} |
4 | 3 | dmeqi 5901 | . . . . 5 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | id 22 | . . . . . . 7 ⊢ (∃𝑦𝜑 → ∃𝑦𝜑) | |
6 | 5 | ralrimivw 3140 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑) |
7 | dmopab3 5916 | . . . . . 6 ⊢ (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V) |
9 | 4, 8 | eqtrid 2777 | . . . 4 ⊢ (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = V) |
10 | vprc 5310 | . . . . 5 ⊢ ¬ V ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑦𝜑 → ¬ V ∈ V) |
12 | 9, 11 | eqneltrd 2845 | . . 3 ⊢ (∃𝑦𝜑 → ¬ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) |
13 | dmexg 7905 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) | |
14 | 12, 13 | nsyl 140 | . 2 ⊢ (∃𝑦𝜑 → ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) |
15 | df-nel 3037 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∉ wnel 3036 ∀wral 3051 Vcvv 3463 {copab 5205 dom cdm 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-nel 3037 df-ral 3052 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: griedg0prc 29119 |
Copyright terms: Public domain | W3C validator |