MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn1stprc Structured version   Visualization version   GIF version

Theorem opabn1stprc 7898
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
opabn1stprc (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem opabn1stprc
StepHypRef Expression
1 vex 3436 . . . . . . . 8 𝑥 ∈ V
21biantrur 531 . . . . . . 7 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
32opabbii 5141 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
43dmeqi 5813 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
5 id 22 . . . . . . 7 (∃𝑦𝜑 → ∃𝑦𝜑)
65ralrimivw 3104 . . . . . 6 (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑)
7 dmopab3 5828 . . . . . 6 (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
86, 7sylib 217 . . . . 5 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
94, 8eqtrid 2790 . . . 4 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = V)
10 vprc 5239 . . . . 5 ¬ V ∈ V
1110a1i 11 . . . 4 (∃𝑦𝜑 → ¬ V ∈ V)
129, 11eqneltrd 2858 . . 3 (∃𝑦𝜑 → ¬ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
13 dmexg 7750 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1412, 13nsyl 140 . 2 (∃𝑦𝜑 → ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
15 df-nel 3050 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1614, 15sylibr 233 1 (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wnel 3049  wral 3064  Vcvv 3432  {copab 5136  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  griedg0prc  27631
  Copyright terms: Public domain W3C validator