![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn1stprc | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
opabn1stprc | ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | biantrur 530 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
3 | 2 | opabbii 5215 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} |
4 | 3 | dmeqi 5918 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | id 22 | . . . . . . 7 ⊢ (∃𝑦𝜑 → ∃𝑦𝜑) | |
6 | 5 | ralrimivw 3148 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑) |
7 | dmopab3 5933 | . . . . . 6 ⊢ (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} = V) | |
8 | 6, 7 | sylib 218 | . . . . 5 ⊢ (∃𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} = V) |
9 | 4, 8 | eqtrid 2787 | . . . 4 ⊢ (∃𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ 𝜑} = V) |
10 | vprc 5321 | . . . . 5 ⊢ ¬ V ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑦𝜑 → ¬ V ∈ V) |
12 | 9, 11 | eqneltrd 2859 | . . 3 ⊢ (∃𝑦𝜑 → ¬ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) |
13 | dmexg 7924 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V → dom {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) | |
14 | 12, 13 | nsyl 140 | . 2 ⊢ (∃𝑦𝜑 → ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) |
15 | df-nel 3045 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) | |
16 | 14, 15 | sylibr 234 | 1 ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∉ wnel 3044 ∀wral 3059 Vcvv 3478 {copab 5210 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-nel 3045 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: griedg0prc 29296 |
Copyright terms: Public domain | W3C validator |