Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabn1stprc | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
opabn1stprc | ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3446 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | biantrur 532 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
3 | 2 | opabbii 5163 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} |
4 | 3 | dmeqi 5850 | . . . . 5 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | id 22 | . . . . . . 7 ⊢ (∃𝑦𝜑 → ∃𝑦𝜑) | |
6 | 5 | ralrimivw 3144 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑) |
7 | dmopab3 5865 | . . . . . 6 ⊢ (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} = V) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ (∃𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝜑)} = V) |
9 | 4, 8 | eqtrid 2789 | . . . 4 ⊢ (∃𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ 𝜑} = V) |
10 | vprc 5263 | . . . . 5 ⊢ ¬ V ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑦𝜑 → ¬ V ∈ V) |
12 | 9, 11 | eqneltrd 2857 | . . 3 ⊢ (∃𝑦𝜑 → ¬ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) |
13 | dmexg 7822 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V → dom {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) | |
14 | 12, 13 | nsyl 140 | . 2 ⊢ (∃𝑦𝜑 → ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) |
15 | df-nel 3048 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V ↔ ¬ {〈𝑥, 𝑦〉 ∣ 𝜑} ∈ V) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∉ wnel 3047 ∀wral 3062 Vcvv 3442 {copab 5158 dom cdm 5624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-nel 3048 df-ral 3063 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-cnv 5632 df-dm 5634 df-rn 5635 |
This theorem is referenced by: griedg0prc 27919 |
Copyright terms: Public domain | W3C validator |