MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn1stprc Structured version   Visualization version   GIF version

Theorem opabn1stprc 8082
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
opabn1stprc (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem opabn1stprc
StepHypRef Expression
1 vex 3482 . . . . . . . 8 𝑥 ∈ V
21biantrur 530 . . . . . . 7 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
32opabbii 5215 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
43dmeqi 5918 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
5 id 22 . . . . . . 7 (∃𝑦𝜑 → ∃𝑦𝜑)
65ralrimivw 3148 . . . . . 6 (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑)
7 dmopab3 5933 . . . . . 6 (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
86, 7sylib 218 . . . . 5 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
94, 8eqtrid 2787 . . . 4 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = V)
10 vprc 5321 . . . . 5 ¬ V ∈ V
1110a1i 11 . . . 4 (∃𝑦𝜑 → ¬ V ∈ V)
129, 11eqneltrd 2859 . . 3 (∃𝑦𝜑 → ¬ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
13 dmexg 7924 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1412, 13nsyl 140 . 2 (∃𝑦𝜑 → ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
15 df-nel 3045 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1614, 15sylibr 234 1 (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wnel 3044  wral 3059  Vcvv 3478  {copab 5210  dom cdm 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-nel 3045  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  griedg0prc  29296
  Copyright terms: Public domain W3C validator