![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn1stprc | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
opabn1stprc | ⊢ (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | biantrur 532 | . . . . . . 7 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
3 | 2 | opabbii 5216 | . . . . . 6 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} |
4 | 3 | dmeqi 5905 | . . . . 5 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | id 22 | . . . . . . 7 ⊢ (∃𝑦𝜑 → ∃𝑦𝜑) | |
6 | 5 | ralrimivw 3151 | . . . . . 6 ⊢ (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑) |
7 | dmopab3 5920 | . . . . . 6 ⊢ (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V) |
9 | 4, 8 | eqtrid 2785 | . . . 4 ⊢ (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = V) |
10 | vprc 5316 | . . . . 5 ⊢ ¬ V ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (∃𝑦𝜑 → ¬ V ∈ V) |
12 | 9, 11 | eqneltrd 2854 | . . 3 ⊢ (∃𝑦𝜑 → ¬ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) |
13 | dmexg 7894 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) | |
14 | 12, 13 | nsyl 140 | . 2 ⊢ (∃𝑦𝜑 → ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) |
15 | df-nel 3048 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∉ wnel 3047 ∀wral 3062 Vcvv 3475 {copab 5211 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-nel 3048 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: griedg0prc 28521 |
Copyright terms: Public domain | W3C validator |