MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn1stprc Structured version   Visualization version   GIF version

Theorem opabn1stprc 7756
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
opabn1stprc (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem opabn1stprc
StepHypRef Expression
1 vex 3497 . . . . . . . 8 𝑥 ∈ V
21biantrur 533 . . . . . . 7 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
32opabbii 5133 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
43dmeqi 5773 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)}
5 id 22 . . . . . . 7 (∃𝑦𝜑 → ∃𝑦𝜑)
65ralrimivw 3183 . . . . . 6 (∃𝑦𝜑 → ∀𝑥 ∈ V ∃𝑦𝜑)
7 dmopab3 5788 . . . . . 6 (∀𝑥 ∈ V ∃𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
86, 7sylib 220 . . . . 5 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝜑)} = V)
94, 8syl5eq 2868 . . . 4 (∃𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = V)
10 vprc 5219 . . . . 5 ¬ V ∈ V
1110a1i 11 . . . 4 (∃𝑦𝜑 → ¬ V ∈ V)
129, 11eqneltrd 2932 . . 3 (∃𝑦𝜑 → ¬ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
13 dmexg 7613 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V → dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1412, 13nsyl 142 . 2 (∃𝑦𝜑 → ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
15 df-nel 3124 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∈ V)
1614, 15sylibr 236 1 (∃𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wnel 3123  wral 3138  Vcvv 3494  {copab 5128  dom cdm 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-nel 3124  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-cnv 5563  df-dm 5565  df-rn 5566
This theorem is referenced by:  griedg0prc  27046
  Copyright terms: Public domain W3C validator