Step | Hyp | Ref
| Expression |
1 | | onintrab2 7624 |
. . . 4
⊢
(∃𝑥 ∈ On
𝐴 ≺ 𝑥 ↔ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈
On) |
2 | 1 | biimpi 215 |
. . 3
⊢
(∃𝑥 ∈ On
𝐴 ≺ 𝑥 → ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈
On) |
3 | 2 | adantr 480 |
. . . . . 6
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) |
4 | | eloni 6261 |
. . . . . . . 8
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈ On → Ord
∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
5 | | ordelss 6267 |
. . . . . . . 8
⊢ ((Ord
∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
6 | 4, 5 | sylan 579 |
. . . . . . 7
⊢ ((∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈ On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) → 𝑦 ⊆ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) |
7 | 1, 6 | sylanb 580 |
. . . . . 6
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
8 | | ssdomg 8741 |
. . . . . 6
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈ On → (𝑦 ⊆ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} → 𝑦 ≼ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥})) |
9 | 3, 7, 8 | sylc 65 |
. . . . 5
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ≼ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
10 | | onelon 6276 |
. . . . . . . 8
⊢ ((∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈ On ∧ 𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) → 𝑦 ∈ On) |
11 | 1, 10 | sylanb 580 |
. . . . . . 7
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ∈ On) |
12 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝐴 |
13 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥
≺ |
14 | | nfrab1 3310 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
15 | 14 | nfint 4886 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} |
16 | 12, 13, 15 | nfbr 5117 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝐴 ≺ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} |
17 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∩
{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
18 | 16, 17 | onminsb 7621 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈ On
𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
19 | | sdomentr 8847 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≺ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∧ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ≈ 𝑦) → 𝐴 ≺ 𝑦) |
20 | 18, 19 | sylan 579 |
. . . . . . . . . . 11
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ≈ 𝑦) → 𝐴 ≺ 𝑦) |
21 | | breq2 5074 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦)) |
22 | 21 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ (𝑦 ∈ On ∧ 𝐴 ≺ 𝑦)) |
23 | | ssrab2 4009 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ On |
24 | | onnmin 7625 |
. . . . . . . . . . . . . 14
⊢ (({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ On ∧ 𝑦 ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → ¬ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
25 | 23, 24 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
26 | 22, 25 | sylbir 234 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝐴 ≺ 𝑦) → ¬ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
27 | 26 | expcom 413 |
. . . . . . . . . . 11
⊢ (𝐴 ≺ 𝑦 → (𝑦 ∈ On → ¬ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
28 | 20, 27 | syl 17 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ≈ 𝑦) → (𝑦 ∈ On → ¬ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
29 | 28 | impancom 451 |
. . . . . . . . 9
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ On) → (∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ≈ 𝑦 → ¬ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
30 | 29 | con2d 134 |
. . . . . . . 8
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ On) → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ ∩
{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ≈ 𝑦)) |
31 | 30 | impancom 451 |
. . . . . . 7
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → (𝑦 ∈ On → ¬ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ≈ 𝑦)) |
32 | 11, 31 | mpd 15 |
. . . . . 6
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → ¬ ∩
{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ≈ 𝑦) |
33 | | ensym 8744 |
. . . . . 6
⊢ (𝑦 ≈ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} → ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ≈ 𝑦) |
34 | 32, 33 | nsyl 140 |
. . . . 5
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → ¬ 𝑦 ≈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
35 | | brsdom 8718 |
. . . . 5
⊢ (𝑦 ≺ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ↔ (𝑦 ≼ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∧ ¬ 𝑦 ≈ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥})) |
36 | 9, 34, 35 | sylanbrc 582 |
. . . 4
⊢
((∃𝑥 ∈ On
𝐴 ≺ 𝑥 ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
37 | 36 | ralrimiva 3107 |
. . 3
⊢
(∃𝑥 ∈ On
𝐴 ≺ 𝑥 → ∀𝑦 ∈ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
38 | | iscard 9664 |
. . 3
⊢
((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
39 | 2, 37, 38 | sylanbrc 582 |
. 2
⊢
(∃𝑥 ∈ On
𝐴 ≺ 𝑥 → (card‘∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) = ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) |
40 | | vprc 5234 |
. . . . . 6
⊢ ¬ V
∈ V |
41 | | inteq 4879 |
. . . . . . . 8
⊢ ({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = ∅ → ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} = ∩ ∅) |
42 | | int0 4890 |
. . . . . . . 8
⊢ ∩ ∅ = V |
43 | 41, 42 | eqtrdi 2795 |
. . . . . . 7
⊢ ({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = ∅ → ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} = V) |
44 | 43 | eleq1d 2823 |
. . . . . 6
⊢ ({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = ∅ → (∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈ V ↔ V ∈
V)) |
45 | 40, 44 | mtbiri 326 |
. . . . 5
⊢ ({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = ∅ → ¬ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈
V) |
46 | | fvex 6769 |
. . . . . 6
⊢
(card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) ∈ V |
47 | | eleq1 2826 |
. . . . . 6
⊢
((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ((card‘∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) ∈ V ↔ ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥} ∈
V)) |
48 | 46, 47 | mpbii 232 |
. . . . 5
⊢
((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ V) |
49 | 45, 48 | nsyl 140 |
. . . 4
⊢ ({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} = ∅ → ¬ (card‘∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) = ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) |
50 | 49 | necon2ai 2972 |
. . 3
⊢
((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ≠ ∅) |
51 | | rabn0 4316 |
. . 3
⊢ ({𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐴 ≺ 𝑥) |
52 | 50, 51 | sylib 217 |
. 2
⊢
((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) |
53 | 39, 52 | impbii 208 |
1
⊢
(∃𝑥 ∈ On
𝐴 ≺ 𝑥 ↔ (card‘∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) = ∩ {𝑥
∈ On ∣ 𝐴 ≺
𝑥}) |