MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin2 Structured version   Visualization version   GIF version

Theorem cardmin2 9990
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardmin2 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ↔ (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem cardmin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 onintrab2 7781 . . . 4 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ↔ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On)
21biimpi 215 . . 3 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On)
32adantr 481 . . . . . 6 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On)
4 eloni 6371 . . . . . . . 8 (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On β†’ Ord ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
5 ordelss 6377 . . . . . . . 8 ((Ord ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 βŠ† ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
64, 5sylan 580 . . . . . . 7 ((∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 βŠ† ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
71, 6sylanb 581 . . . . . 6 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 βŠ† ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
8 ssdomg 8992 . . . . . 6 (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On β†’ (𝑦 βŠ† ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ 𝑦 β‰Ό ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
93, 7, 8sylc 65 . . . . 5 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 β‰Ό ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
10 onelon 6386 . . . . . . . 8 ((∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 ∈ On)
111, 10sylanb 581 . . . . . . 7 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 ∈ On)
12 nfcv 2903 . . . . . . . . . . . . . 14 β„²π‘₯𝐴
13 nfcv 2903 . . . . . . . . . . . . . 14 β„²π‘₯ β‰Ί
14 nfrab1 3451 . . . . . . . . . . . . . . 15 β„²π‘₯{π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}
1514nfint 4959 . . . . . . . . . . . . . 14 β„²π‘₯∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}
1612, 13, 15nfbr 5194 . . . . . . . . . . . . 13 β„²π‘₯ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}
17 breq2 5151 . . . . . . . . . . . . 13 (π‘₯ = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
1816, 17onminsb 7778 . . . . . . . . . . . 12 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ β†’ 𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
19 sdomentr 9107 . . . . . . . . . . . 12 ((𝐴 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∧ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦) β†’ 𝐴 β‰Ί 𝑦)
2018, 19sylan 580 . . . . . . . . . . 11 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦) β†’ 𝐴 β‰Ί 𝑦)
21 breq2 5151 . . . . . . . . . . . . . 14 (π‘₯ = 𝑦 β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί 𝑦))
2221elrab 3682 . . . . . . . . . . . . 13 (𝑦 ∈ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ↔ (𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦))
23 ssrab2 4076 . . . . . . . . . . . . . 14 {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} βŠ† On
24 onnmin 7782 . . . . . . . . . . . . . 14 (({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} βŠ† On ∧ 𝑦 ∈ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ Β¬ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
2523, 24mpan 688 . . . . . . . . . . . . 13 (𝑦 ∈ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ Β¬ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
2622, 25sylbir 234 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 β‰Ί 𝑦) β†’ Β¬ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
2726expcom 414 . . . . . . . . . . 11 (𝐴 β‰Ί 𝑦 β†’ (𝑦 ∈ On β†’ Β¬ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
2820, 27syl 17 . . . . . . . . . 10 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦) β†’ (𝑦 ∈ On β†’ Β¬ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
2928impancom 452 . . . . . . . . 9 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ On) β†’ (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦 β†’ Β¬ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
3029con2d 134 . . . . . . . 8 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ On) β†’ (𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ Β¬ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦))
3130impancom 452 . . . . . . 7 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ (𝑦 ∈ On β†’ Β¬ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦))
3211, 31mpd 15 . . . . . 6 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ Β¬ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦)
33 ensym 8995 . . . . . 6 (𝑦 β‰ˆ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰ˆ 𝑦)
3432, 33nsyl 140 . . . . 5 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ Β¬ 𝑦 β‰ˆ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
35 brsdom 8967 . . . . 5 (𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ↔ (𝑦 β‰Ό ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∧ Β¬ 𝑦 β‰ˆ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
369, 34, 35sylanbrc 583 . . . 4 ((βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ∧ 𝑦 ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) β†’ 𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
3736ralrimiva 3146 . . 3 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ β†’ βˆ€π‘¦ ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
38 iscard 9966 . . 3 ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ↔ (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ On ∧ βˆ€π‘¦ ∈ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}𝑦 β‰Ί ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}))
392, 37, 38sylanbrc 583 . 2 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ β†’ (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
40 vprc 5314 . . . . . 6 Β¬ V ∈ V
41 inteq 4952 . . . . . . . 8 ({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = βˆ… β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = ∩ βˆ…)
42 int0 4965 . . . . . . . 8 ∩ βˆ… = V
4341, 42eqtrdi 2788 . . . . . . 7 ({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = βˆ… β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = V)
4443eleq1d 2818 . . . . . 6 ({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = βˆ… β†’ (∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ V ↔ V ∈ V))
4540, 44mtbiri 326 . . . . 5 ({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = βˆ… β†’ Β¬ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ V)
46 fvex 6901 . . . . . 6 (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) ∈ V
47 eleq1 2821 . . . . . 6 ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) ∈ V ↔ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ V))
4846, 47mpbii 232 . . . . 5 ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ∈ V)
4945, 48nsyl 140 . . . 4 ({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} = βˆ… β†’ Β¬ (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
5049necon2ai 2970 . . 3 ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰  βˆ…)
51 rabn0 4384 . . 3 ({π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β‰  βˆ… ↔ βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯)
5250, 51sylib 217 . 2 ((cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯)
5339, 52impbii 208 1 (βˆƒπ‘₯ ∈ On 𝐴 β‰Ί π‘₯ ↔ (cardβ€˜βˆ© {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯}) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321  βˆ© cint 4949   class class class wbr 5147  Ord word 6360  Oncon0 6361  β€˜cfv 6540   β‰ˆ cen 8932   β‰Ό cdom 8933   β‰Ί csdm 8934  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-card 9930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator