MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin2 Structured version   Visualization version   GIF version

Theorem cardmin2 9928
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardmin2 (∃𝑥 ∈ On 𝐴𝑥 ↔ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardmin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 onintrab2 7753 . . . 4 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
21biimpi 216 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
32adantr 480 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 eloni 6330 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴𝑥})
5 ordelss 6336 . . . . . . . 8 ((Ord {𝑥 ∈ On ∣ 𝐴𝑥} ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
64, 5sylan 580 . . . . . . 7 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
71, 6sylanb 581 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
8 ssdomg 8948 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
93, 7, 8sylc 65 . . . . 5 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
10 onelon 6345 . . . . . . . 8 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
111, 10sylanb 581 . . . . . . 7 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
12 nfcv 2891 . . . . . . . . . . . . . 14 𝑥𝐴
13 nfcv 2891 . . . . . . . . . . . . . 14 𝑥
14 nfrab1 3423 . . . . . . . . . . . . . . 15 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1514nfint 4916 . . . . . . . . . . . . . 14 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1612, 13, 15nfbr 5149 . . . . . . . . . . . . 13 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
17 breq2 5106 . . . . . . . . . . . . 13 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
1816, 17onminsb 7750 . . . . . . . . . . . 12 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
19 sdomentr 9052 . . . . . . . . . . . 12 ((𝐴 {𝑥 ∈ On ∣ 𝐴𝑥} ∧ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → 𝐴𝑦)
2018, 19sylan 580 . . . . . . . . . . 11 ((∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → 𝐴𝑦)
21 breq2 5106 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2221elrab 3656 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥} ↔ (𝑦 ∈ On ∧ 𝐴𝑦))
23 ssrab2 4039 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ On
24 onnmin 7754 . . . . . . . . . . . . . 14 (({𝑥 ∈ On ∣ 𝐴𝑥} ⊆ On ∧ 𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2523, 24mpan 690 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2622, 25sylbir 235 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴𝑦) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2726expcom 413 . . . . . . . . . . 11 (𝐴𝑦 → (𝑦 ∈ On → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2820, 27syl 17 . . . . . . . . . 10 ((∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → (𝑦 ∈ On → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2928impancom 451 . . . . . . . . 9 ((∃𝑥 ∈ On 𝐴𝑥𝑦 ∈ On) → ( {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦 → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
3029con2d 134 . . . . . . . 8 ((∃𝑥 ∈ On 𝐴𝑥𝑦 ∈ On) → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦))
3130impancom 451 . . . . . . 7 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → (𝑦 ∈ On → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦))
3211, 31mpd 15 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦)
33 ensym 8951 . . . . . 6 (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦)
3432, 33nsyl 140 . . . . 5 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
35 brsdom 8923 . . . . 5 (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} ↔ (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} ∧ ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
369, 34, 35sylanbrc 583 . . . 4 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
3736ralrimiva 3125 . . 3 (∃𝑥 ∈ On 𝐴𝑥 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
38 iscard 9904 . . 3 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
392, 37, 38sylanbrc 583 . 2 (∃𝑥 ∈ On 𝐴𝑥 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
40 vprc 5265 . . . . . 6 ¬ V ∈ V
41 inteq 4909 . . . . . . . 8 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → {𝑥 ∈ On ∣ 𝐴𝑥} = ∅)
42 int0 4922 . . . . . . . 8 ∅ = V
4341, 42eqtrdi 2780 . . . . . . 7 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → {𝑥 ∈ On ∣ 𝐴𝑥} = V)
4443eleq1d 2813 . . . . . 6 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V ↔ V ∈ V))
4540, 44mtbiri 327 . . . . 5 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V)
46 fvex 6853 . . . . . 6 (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) ∈ V
47 eleq1 2816 . . . . . 6 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) ∈ V ↔ {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V))
4846, 47mpbii 233 . . . . 5 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V)
4945, 48nsyl 140 . . . 4 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ¬ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
5049necon2ai 2954 . . 3 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ≠ ∅)
51 rabn0 4348 . . 3 ({𝑥 ∈ On ∣ 𝐴𝑥} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐴𝑥)
5250, 51sylib 218 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → ∃𝑥 ∈ On 𝐴𝑥)
5339, 52impbii 209 1 (∃𝑥 ∈ On 𝐴𝑥 ↔ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292   cint 4906   class class class wbr 5102  Ord word 6319  Oncon0 6320  cfv 6499  cen 8892  cdom 8893  csdm 8894  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator