MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin2 Structured version   Visualization version   GIF version

Theorem cardmin2 9892
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardmin2 (∃𝑥 ∈ On 𝐴𝑥 ↔ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardmin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 onintrab2 7730 . . . 4 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
21biimpi 216 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
32adantr 480 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 eloni 6316 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴𝑥})
5 ordelss 6322 . . . . . . . 8 ((Ord {𝑥 ∈ On ∣ 𝐴𝑥} ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
64, 5sylan 580 . . . . . . 7 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
71, 6sylanb 581 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
8 ssdomg 8922 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
93, 7, 8sylc 65 . . . . 5 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
10 onelon 6331 . . . . . . . 8 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
111, 10sylanb 581 . . . . . . 7 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
12 nfcv 2894 . . . . . . . . . . . . . 14 𝑥𝐴
13 nfcv 2894 . . . . . . . . . . . . . 14 𝑥
14 nfrab1 3415 . . . . . . . . . . . . . . 15 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1514nfint 4905 . . . . . . . . . . . . . 14 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1612, 13, 15nfbr 5136 . . . . . . . . . . . . 13 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
17 breq2 5093 . . . . . . . . . . . . 13 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
1816, 17onminsb 7727 . . . . . . . . . . . 12 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
19 sdomentr 9024 . . . . . . . . . . . 12 ((𝐴 {𝑥 ∈ On ∣ 𝐴𝑥} ∧ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → 𝐴𝑦)
2018, 19sylan 580 . . . . . . . . . . 11 ((∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → 𝐴𝑦)
21 breq2 5093 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2221elrab 3642 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥} ↔ (𝑦 ∈ On ∧ 𝐴𝑦))
23 ssrab2 4027 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ On
24 onnmin 7731 . . . . . . . . . . . . . 14 (({𝑥 ∈ On ∣ 𝐴𝑥} ⊆ On ∧ 𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2523, 24mpan 690 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2622, 25sylbir 235 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴𝑦) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2726expcom 413 . . . . . . . . . . 11 (𝐴𝑦 → (𝑦 ∈ On → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2820, 27syl 17 . . . . . . . . . 10 ((∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → (𝑦 ∈ On → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2928impancom 451 . . . . . . . . 9 ((∃𝑥 ∈ On 𝐴𝑥𝑦 ∈ On) → ( {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦 → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
3029con2d 134 . . . . . . . 8 ((∃𝑥 ∈ On 𝐴𝑥𝑦 ∈ On) → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦))
3130impancom 451 . . . . . . 7 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → (𝑦 ∈ On → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦))
3211, 31mpd 15 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦)
33 ensym 8925 . . . . . 6 (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦)
3432, 33nsyl 140 . . . . 5 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
35 brsdom 8897 . . . . 5 (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} ↔ (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} ∧ ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
369, 34, 35sylanbrc 583 . . . 4 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
3736ralrimiva 3124 . . 3 (∃𝑥 ∈ On 𝐴𝑥 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
38 iscard 9868 . . 3 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
392, 37, 38sylanbrc 583 . 2 (∃𝑥 ∈ On 𝐴𝑥 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
40 vprc 5251 . . . . . 6 ¬ V ∈ V
41 inteq 4898 . . . . . . . 8 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → {𝑥 ∈ On ∣ 𝐴𝑥} = ∅)
42 int0 4910 . . . . . . . 8 ∅ = V
4341, 42eqtrdi 2782 . . . . . . 7 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → {𝑥 ∈ On ∣ 𝐴𝑥} = V)
4443eleq1d 2816 . . . . . 6 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V ↔ V ∈ V))
4540, 44mtbiri 327 . . . . 5 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V)
46 fvex 6835 . . . . . 6 (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) ∈ V
47 eleq1 2819 . . . . . 6 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) ∈ V ↔ {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V))
4846, 47mpbii 233 . . . . 5 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V)
4945, 48nsyl 140 . . . 4 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ¬ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
5049necon2ai 2957 . . 3 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ≠ ∅)
51 rabn0 4336 . . 3 ({𝑥 ∈ On ∣ 𝐴𝑥} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐴𝑥)
5250, 51sylib 218 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → ∃𝑥 ∈ On 𝐴𝑥)
5339, 52impbii 209 1 (∃𝑥 ∈ On 𝐴𝑥 ↔ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   cint 4895   class class class wbr 5089  Ord word 6305  Oncon0 6306  cfv 6481  cen 8866  cdom 8867  csdm 8868  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator