MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkv0 Structured version   Visualization version   GIF version

Theorem wlkv0 29684
Description: If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
Assertion
Ref Expression
wlkv0 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))

Proof of Theorem wlkv0
StepHypRef Expression
1 wlkcpr 29662 . . 3 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
2 eqid 2735 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
32wlkf 29647 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (1st𝑊) ∈ Word dom (iEdg‘𝐺))
4 eqid 2735 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkp 29649 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺))
63, 5jca 511 . . . 4 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)))
7 feq3 6719 . . . . . . 7 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅))
8 f00 6791 . . . . . . 7 ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅ ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅))
97, 8bitrdi 287 . . . . . 6 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅)))
10 0z 12622 . . . . . . . . . . . . 13 0 ∈ ℤ
11 nn0z 12636 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → (♯‘(1st𝑊)) ∈ ℤ)
12 fzn 13577 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (♯‘(1st𝑊)) ∈ ℤ) → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
1310, 11, 12sylancr 587 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
14 nn0nlt0 12550 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → ¬ (♯‘(1st𝑊)) < 0)
1514pm2.21d 121 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 → (1st𝑊) = ∅))
1613, 15sylbird 260 . . . . . . . . . . 11 ((♯‘(1st𝑊)) ∈ ℕ0 → ((0...(♯‘(1st𝑊))) = ∅ → (1st𝑊) = ∅))
1716com12 32 . . . . . . . . . 10 ((0...(♯‘(1st𝑊))) = ∅ → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
1817adantl 481 . . . . . . . . 9 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
19 lencl 14568 . . . . . . . . 9 ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝑊)) ∈ ℕ0)
2018, 19impel 505 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (1st𝑊) = ∅)
21 simpll 767 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (2nd𝑊) = ∅)
2220, 21jca 511 . . . . . . 7 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
2322ex 412 . . . . . 6 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
249, 23biimtrdi 253 . . . . 5 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))))
2524impcomd 411 . . . 4 ((Vtx‘𝐺) = ∅ → (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
266, 25syl5 34 . . 3 ((Vtx‘𝐺) = ∅ → ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
271, 26biimtrid 242 . 2 ((Vtx‘𝐺) = ∅ → (𝑊 ∈ (Walks‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
2827imp 406 1 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  c0 4339   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  0cc0 11153   < clt 11293  0cn0 12524  cz 12611  ...cfz 13544  chash 14366  Word cword 14549  Vtxcvtx 29028  iEdgciedg 29029  Walkscwlks 29629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wlks 29632
This theorem is referenced by:  g0wlk0  29685
  Copyright terms: Public domain W3C validator