MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkv0 Structured version   Visualization version   GIF version

Theorem wlkv0 29639
Description: If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
Assertion
Ref Expression
wlkv0 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))

Proof of Theorem wlkv0
StepHypRef Expression
1 wlkcpr 29618 . . 3 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
2 eqid 2733 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
32wlkf 29604 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (1st𝑊) ∈ Word dom (iEdg‘𝐺))
4 eqid 2733 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkp 29606 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺))
63, 5jca 511 . . . 4 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)))
7 feq3 6639 . . . . . . 7 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅))
8 f00 6713 . . . . . . 7 ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅ ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅))
97, 8bitrdi 287 . . . . . 6 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅)))
10 0z 12489 . . . . . . . . . . . . 13 0 ∈ ℤ
11 nn0z 12503 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → (♯‘(1st𝑊)) ∈ ℤ)
12 fzn 13450 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (♯‘(1st𝑊)) ∈ ℤ) → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
1310, 11, 12sylancr 587 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
14 nn0nlt0 12417 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → ¬ (♯‘(1st𝑊)) < 0)
1514pm2.21d 121 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 → (1st𝑊) = ∅))
1613, 15sylbird 260 . . . . . . . . . . 11 ((♯‘(1st𝑊)) ∈ ℕ0 → ((0...(♯‘(1st𝑊))) = ∅ → (1st𝑊) = ∅))
1716com12 32 . . . . . . . . . 10 ((0...(♯‘(1st𝑊))) = ∅ → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
1817adantl 481 . . . . . . . . 9 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
19 lencl 14450 . . . . . . . . 9 ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝑊)) ∈ ℕ0)
2018, 19impel 505 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (1st𝑊) = ∅)
21 simpll 766 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (2nd𝑊) = ∅)
2220, 21jca 511 . . . . . . 7 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
2322ex 412 . . . . . 6 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
249, 23biimtrdi 253 . . . . 5 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))))
2524impcomd 411 . . . 4 ((Vtx‘𝐺) = ∅ → (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
266, 25syl5 34 . . 3 ((Vtx‘𝐺) = ∅ → ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
271, 26biimtrid 242 . 2 ((Vtx‘𝐺) = ∅ → (𝑊 ∈ (Walks‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
2827imp 406 1 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  c0 4284   class class class wbr 5095  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11016   < clt 11156  0cn0 12391  cz 12478  ...cfz 13417  chash 14247  Word cword 14430  Vtxcvtx 28985  iEdgciedg 28986  Walkscwlks 29586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-wlks 29589
This theorem is referenced by:  g0wlk0  29640
  Copyright terms: Public domain W3C validator