MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkv0 Structured version   Visualization version   GIF version

Theorem wlkv0 29631
Description: If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
Assertion
Ref Expression
wlkv0 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))

Proof of Theorem wlkv0
StepHypRef Expression
1 wlkcpr 29609 . . 3 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
2 eqid 2735 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
32wlkf 29594 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (1st𝑊) ∈ Word dom (iEdg‘𝐺))
4 eqid 2735 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkp 29596 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺))
63, 5jca 511 . . . 4 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)))
7 feq3 6688 . . . . . . 7 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅))
8 f00 6760 . . . . . . 7 ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅ ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅))
97, 8bitrdi 287 . . . . . 6 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅)))
10 0z 12599 . . . . . . . . . . . . 13 0 ∈ ℤ
11 nn0z 12613 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → (♯‘(1st𝑊)) ∈ ℤ)
12 fzn 13557 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (♯‘(1st𝑊)) ∈ ℤ) → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
1310, 11, 12sylancr 587 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
14 nn0nlt0 12527 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → ¬ (♯‘(1st𝑊)) < 0)
1514pm2.21d 121 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 → (1st𝑊) = ∅))
1613, 15sylbird 260 . . . . . . . . . . 11 ((♯‘(1st𝑊)) ∈ ℕ0 → ((0...(♯‘(1st𝑊))) = ∅ → (1st𝑊) = ∅))
1716com12 32 . . . . . . . . . 10 ((0...(♯‘(1st𝑊))) = ∅ → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
1817adantl 481 . . . . . . . . 9 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
19 lencl 14551 . . . . . . . . 9 ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝑊)) ∈ ℕ0)
2018, 19impel 505 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (1st𝑊) = ∅)
21 simpll 766 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (2nd𝑊) = ∅)
2220, 21jca 511 . . . . . . 7 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
2322ex 412 . . . . . 6 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
249, 23biimtrdi 253 . . . . 5 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))))
2524impcomd 411 . . . 4 ((Vtx‘𝐺) = ∅ → (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
266, 25syl5 34 . . 3 ((Vtx‘𝐺) = ∅ → ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
271, 26biimtrid 242 . 2 ((Vtx‘𝐺) = ∅ → (𝑊 ∈ (Walks‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
2827imp 406 1 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  c0 4308   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  0cc0 11129   < clt 11269  0cn0 12501  cz 12588  ...cfz 13524  chash 14348  Word cword 14531  Vtxcvtx 28975  iEdgciedg 28976  Walkscwlks 29576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-wlks 29579
This theorem is referenced by:  g0wlk0  29632
  Copyright terms: Public domain W3C validator