MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkv0 Structured version   Visualization version   GIF version

Theorem wlkv0 28599
Description: If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
Assertion
Ref Expression
wlkv0 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))

Proof of Theorem wlkv0
StepHypRef Expression
1 wlkcpr 28577 . . 3 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
2 eqid 2736 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
32wlkf 28562 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (1st𝑊) ∈ Word dom (iEdg‘𝐺))
4 eqid 2736 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkp 28564 . . . . 5 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺))
63, 5jca 512 . . . 4 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)))
7 feq3 6651 . . . . . . 7 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅))
8 f00 6724 . . . . . . 7 ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶∅ ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅))
97, 8bitrdi 286 . . . . . 6 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ ((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅)))
10 0z 12510 . . . . . . . . . . . . 13 0 ∈ ℤ
11 nn0z 12524 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → (♯‘(1st𝑊)) ∈ ℤ)
12 fzn 13457 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (♯‘(1st𝑊)) ∈ ℤ) → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
1310, 11, 12sylancr 587 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 ↔ (0...(♯‘(1st𝑊))) = ∅))
14 nn0nlt0 12439 . . . . . . . . . . . . 13 ((♯‘(1st𝑊)) ∈ ℕ0 → ¬ (♯‘(1st𝑊)) < 0)
1514pm2.21d 121 . . . . . . . . . . . 12 ((♯‘(1st𝑊)) ∈ ℕ0 → ((♯‘(1st𝑊)) < 0 → (1st𝑊) = ∅))
1613, 15sylbird 259 . . . . . . . . . . 11 ((♯‘(1st𝑊)) ∈ ℕ0 → ((0...(♯‘(1st𝑊))) = ∅ → (1st𝑊) = ∅))
1716com12 32 . . . . . . . . . 10 ((0...(♯‘(1st𝑊))) = ∅ → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
1817adantl 482 . . . . . . . . 9 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((♯‘(1st𝑊)) ∈ ℕ0 → (1st𝑊) = ∅))
19 lencl 14421 . . . . . . . . 9 ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝑊)) ∈ ℕ0)
2018, 19impel 506 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (1st𝑊) = ∅)
21 simpll 765 . . . . . . . 8 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → (2nd𝑊) = ∅)
2220, 21jca 512 . . . . . . 7 ((((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) ∧ (1st𝑊) ∈ Word dom (iEdg‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
2322ex 413 . . . . . 6 (((2nd𝑊) = ∅ ∧ (0...(♯‘(1st𝑊))) = ∅) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
249, 23syl6bi 252 . . . . 5 ((Vtx‘𝐺) = ∅ → ((2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))))
2524impcomd 412 . . . 4 ((Vtx‘𝐺) = ∅ → (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(♯‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
266, 25syl5 34 . . 3 ((Vtx‘𝐺) = ∅ → ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
271, 26biimtrid 241 . 2 ((Vtx‘𝐺) = ∅ → (𝑊 ∈ (Walks‘𝐺) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅)))
2827imp 407 1 (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  c0 4282   class class class wbr 5105  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  0cc0 11051   < clt 11189  0cn0 12413  cz 12499  ...cfz 13424  chash 14230  Word cword 14402  Vtxcvtx 27947  iEdgciedg 27948  Walkscwlks 28544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-wlks 28547
This theorem is referenced by:  g0wlk0  28600
  Copyright terms: Public domain W3C validator