MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwlknloop Structured version   Visualization version   GIF version

Theorem umgrwlknloop 29584
Description: In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 3-Jan-2021.)
Assertion
Ref Expression
umgrwlknloop ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘

Proof of Theorem umgrwlknloop
StepHypRef Expression
1 umgrupgr 29037 . . 3 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
2 eqid 2730 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
32upgrwlkvtxedg 29580 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ (Edg‘𝐺))
41, 3sylan 580 . 2 ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ (Edg‘𝐺))
52umgredgne 29079 . . . . 5 ((𝐺 ∈ UMGraph ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ (Edg‘𝐺)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
65ex 412 . . . 4 (𝐺 ∈ UMGraph → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ (Edg‘𝐺) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
76adantr 480 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ (Edg‘𝐺) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
87ralimdv 3148 . 2 ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ (Edg‘𝐺) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
94, 8mpd 15 1 ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  wral 3045  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  ..^cfzo 13622  chash 14302  Edgcedg 28981  UPGraphcupgr 29014  UMGraphcumgr 29015  Walkscwlks 29531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-umgr 29017  df-wlks 29534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator