Step | Hyp | Ref
| Expression |
1 | | wunfi.2 |
. 2
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
2 | | wunfi.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
3 | | sseq1 3942 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝑈 ↔ ∅ ⊆ 𝑈)) |
4 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
5 | 3, 4 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈) ↔ (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))) |
6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑥 = ∅ → ((𝜑 → (𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈)) ↔ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)))) |
7 | | sseq1 3942 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑈 ↔ 𝑦 ⊆ 𝑈)) |
8 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
9 | 7, 8 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈) ↔ (𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈))) |
10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈)) ↔ (𝜑 → (𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈)))) |
11 | | sseq1 3942 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ 𝑈 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑈)) |
12 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝑈 ↔ (𝑦 ∪ {𝑧}) ∈ 𝑈)) |
13 | 11, 12 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))) |
14 | 13 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))) |
15 | | sseq1 3942 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑈 ↔ 𝐴 ⊆ 𝑈)) |
16 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) |
17 | 15, 16 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈) ↔ (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
18 | 17 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝜑 → (𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈)) ↔ (𝜑 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈)))) |
19 | | wun0.1 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ WUni) |
20 | 19 | wun0 10405 |
. . . . 5
⊢ (𝜑 → ∅ ∈ 𝑈) |
21 | 20 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)) |
22 | | ssun1 4102 |
. . . . . . . . 9
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
23 | | sstr 3925 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑈) → 𝑦 ⊆ 𝑈) |
24 | 22, 23 | mpan 686 |
. . . . . . . 8
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → 𝑦 ⊆ 𝑈) |
25 | 24 | imim1i 63 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → 𝑦 ∈ 𝑈)) |
26 | 19 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑈 ∈ WUni) |
27 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) |
28 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑦 ∪ {𝑧}) ⊆ 𝑈) |
29 | 28 | unssbd 4118 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → {𝑧} ⊆ 𝑈) |
30 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
31 | 30 | snss 4716 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑈 ↔ {𝑧} ⊆ 𝑈) |
32 | 29, 31 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑧 ∈ 𝑈) |
33 | 26, 32 | wunsn 10403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → {𝑧} ∈ 𝑈) |
34 | 26, 27, 33 | wunun 10397 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑦 ∪ {𝑧}) ∈ 𝑈) |
35 | 34 | exp32 420 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∈ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))) |
36 | 35 | a2d 29 |
. . . . . . 7
⊢ (𝜑 → (((𝑦 ∪ {𝑧}) ⊆ 𝑈 → 𝑦 ∈ 𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))) |
37 | 25, 36 | syl5 34 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))) |
38 | 37 | a2i 14 |
. . . . 5
⊢ ((𝜑 → (𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))) |
39 | 38 | a1i 11 |
. . . 4
⊢ (𝑦 ∈ Fin → ((𝜑 → (𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))) |
40 | 6, 10, 14, 18, 21, 39 | findcard2 8909 |
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
41 | 2, 40 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈)) |
42 | 1, 41 | mpd 15 |
1
⊢ (𝜑 → 𝐴 ∈ 𝑈) |