MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Structured version   Visualization version   GIF version

Theorem wunfi 10477
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunfi.2 (𝜑𝐴𝑈)
wunfi.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
wunfi (𝜑𝐴𝑈)

Proof of Theorem wunfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2 (𝜑𝐴𝑈)
2 wunfi.3 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3946 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ⊆ 𝑈))
4 eleq1 2826 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ∈ 𝑈))
53, 4imbi12d 345 . . . . 5 (𝑥 = ∅ → ((𝑥𝑈𝑥𝑈) ↔ (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)))
65imbi2d 341 . . . 4 (𝑥 = ∅ → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))))
7 sseq1 3946 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
8 eleq1 2826 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
97, 8imbi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑈𝑥𝑈) ↔ (𝑦𝑈𝑦𝑈)))
109imbi2d 341 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝑦𝑈𝑦𝑈))))
11 sseq1 3946 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑈))
12 eleq1 2826 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ∈ 𝑈))
1311, 12imbi12d 345 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝑈𝑥𝑈) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
1413imbi2d 341 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
15 sseq1 3946 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
16 eleq1 2826 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
1715, 16imbi12d 345 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑈𝑥𝑈) ↔ (𝐴𝑈𝐴𝑈)))
1817imbi2d 341 . . . 4 (𝑥 = 𝐴 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝐴𝑈𝐴𝑈))))
19 wun0.1 . . . . . 6 (𝜑𝑈 ∈ WUni)
2019wun0 10474 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
2120a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))
22 ssun1 4106 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
23 sstr 3929 . . . . . . . . 9 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑈) → 𝑦𝑈)
2422, 23mpan 687 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)
2524imim1i 63 . . . . . . 7 ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈))
2619adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑈 ∈ WUni)
27 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑦𝑈)
28 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ⊆ 𝑈)
2928unssbd 4122 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ⊆ 𝑈)
30 vex 3436 . . . . . . . . . . . . 13 𝑧 ∈ V
3130snss 4719 . . . . . . . . . . . 12 (𝑧𝑈 ↔ {𝑧} ⊆ 𝑈)
3229, 31sylibr 233 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑧𝑈)
3326, 32wunsn 10472 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ∈ 𝑈)
3426, 27, 33wunun 10466 . . . . . . . . 9 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ∈ 𝑈)
3534exp32 421 . . . . . . . 8 (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3635a2d 29 . . . . . . 7 (𝜑 → (((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3725, 36syl5 34 . . . . . 6 (𝜑 → ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3837a2i 14 . . . . 5 ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3938a1i 11 . . . 4 (𝑦 ∈ Fin → ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
406, 10, 14, 18, 21, 39findcard2 8947 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝑈𝐴𝑈)))
412, 40mpcom 38 . 2 (𝜑 → (𝐴𝑈𝐴𝑈))
421, 41mpd 15 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3885  wss 3887  c0 4256  {csn 4561  Fincfn 8733  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734  df-fin 8737  df-wun 10458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator