MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Structured version   Visualization version   GIF version

Theorem wunfi 10547
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunfi.2 (𝜑𝐴𝑈)
wunfi.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
wunfi (𝜑𝐴𝑈)

Proof of Theorem wunfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2 (𝜑𝐴𝑈)
2 wunfi.3 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3955 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ⊆ 𝑈))
4 eleq1 2825 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ∈ 𝑈))
53, 4imbi12d 344 . . . . 5 (𝑥 = ∅ → ((𝑥𝑈𝑥𝑈) ↔ (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))))
7 sseq1 3955 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
8 eleq1 2825 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
97, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑈𝑥𝑈) ↔ (𝑦𝑈𝑦𝑈)))
109imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝑦𝑈𝑦𝑈))))
11 sseq1 3955 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑈))
12 eleq1 2825 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ∈ 𝑈))
1311, 12imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝑈𝑥𝑈) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
1413imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
15 sseq1 3955 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
16 eleq1 2825 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
1715, 16imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑈𝑥𝑈) ↔ (𝐴𝑈𝐴𝑈)))
1817imbi2d 340 . . . 4 (𝑥 = 𝐴 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝐴𝑈𝐴𝑈))))
19 wun0.1 . . . . . 6 (𝜑𝑈 ∈ WUni)
2019wun0 10544 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
2120a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))
22 ssun1 4116 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
23 sstr 3938 . . . . . . . . 9 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑈) → 𝑦𝑈)
2422, 23mpan 687 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)
2524imim1i 63 . . . . . . 7 ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈))
2619adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑈 ∈ WUni)
27 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑦𝑈)
28 simprl 768 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ⊆ 𝑈)
2928unssbd 4132 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ⊆ 𝑈)
30 vex 3445 . . . . . . . . . . . . 13 𝑧 ∈ V
3130snss 4729 . . . . . . . . . . . 12 (𝑧𝑈 ↔ {𝑧} ⊆ 𝑈)
3229, 31sylibr 233 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑧𝑈)
3326, 32wunsn 10542 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ∈ 𝑈)
3426, 27, 33wunun 10536 . . . . . . . . 9 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ∈ 𝑈)
3534exp32 421 . . . . . . . 8 (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3635a2d 29 . . . . . . 7 (𝜑 → (((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3725, 36syl5 34 . . . . . 6 (𝜑 → ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3837a2i 14 . . . . 5 ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3938a1i 11 . . . 4 (𝑦 ∈ Fin → ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
406, 10, 14, 18, 21, 39findcard2 9004 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝑈𝐴𝑈)))
412, 40mpcom 38 . 2 (𝜑 → (𝐴𝑈𝐴𝑈))
421, 41mpd 15 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cun 3894  wss 3896  c0 4266  {csn 4569  Fincfn 8779  WUnicwun 10526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-om 7756  df-en 8780  df-fin 8783  df-wun 10528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator