MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Structured version   Visualization version   GIF version

Theorem wunfi 10790
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunfi.2 (𝜑𝐴𝑈)
wunfi.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
wunfi (𝜑𝐴𝑈)

Proof of Theorem wunfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2 (𝜑𝐴𝑈)
2 wunfi.3 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 4034 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ⊆ 𝑈))
4 eleq1 2832 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ∈ 𝑈))
53, 4imbi12d 344 . . . . 5 (𝑥 = ∅ → ((𝑥𝑈𝑥𝑈) ↔ (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))))
7 sseq1 4034 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
8 eleq1 2832 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
97, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑈𝑥𝑈) ↔ (𝑦𝑈𝑦𝑈)))
109imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝑦𝑈𝑦𝑈))))
11 sseq1 4034 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑈))
12 eleq1 2832 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ∈ 𝑈))
1311, 12imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝑈𝑥𝑈) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
1413imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
15 sseq1 4034 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
16 eleq1 2832 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
1715, 16imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑈𝑥𝑈) ↔ (𝐴𝑈𝐴𝑈)))
1817imbi2d 340 . . . 4 (𝑥 = 𝐴 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝐴𝑈𝐴𝑈))))
19 wun0.1 . . . . . 6 (𝜑𝑈 ∈ WUni)
2019wun0 10787 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
2120a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))
22 ssun1 4201 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
23 sstr 4017 . . . . . . . . 9 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑈) → 𝑦𝑈)
2422, 23mpan 689 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)
2524imim1i 63 . . . . . . 7 ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈))
2619adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑈 ∈ WUni)
27 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑦𝑈)
28 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ⊆ 𝑈)
2928unssbd 4217 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ⊆ 𝑈)
30 vex 3492 . . . . . . . . . . . . 13 𝑧 ∈ V
3130snss 4810 . . . . . . . . . . . 12 (𝑧𝑈 ↔ {𝑧} ⊆ 𝑈)
3229, 31sylibr 234 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑧𝑈)
3326, 32wunsn 10785 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ∈ 𝑈)
3426, 27, 33wunun 10779 . . . . . . . . 9 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ∈ 𝑈)
3534exp32 420 . . . . . . . 8 (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3635a2d 29 . . . . . . 7 (𝜑 → (((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3725, 36syl5 34 . . . . . 6 (𝜑 → ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3837a2i 14 . . . . 5 ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3938a1i 11 . . . 4 (𝑦 ∈ Fin → ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
406, 10, 14, 18, 21, 39findcard2 9230 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝑈𝐴𝑈)))
412, 40mpcom 38 . 2 (𝜑 → (𝐴𝑈𝐴𝑈))
421, 41mpd 15 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  wss 3976  c0 4352  {csn 4648  Fincfn 9003  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-en 9004  df-fin 9007  df-wun 10771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator