MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Structured version   Visualization version   GIF version

Theorem wunfi 10650
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunfi.2 (𝜑𝐴𝑈)
wunfi.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
wunfi (𝜑𝐴𝑈)

Proof of Theorem wunfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2 (𝜑𝐴𝑈)
2 wunfi.3 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3969 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ⊆ 𝑈))
4 eleq1 2816 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ∈ 𝑈))
53, 4imbi12d 344 . . . . 5 (𝑥 = ∅ → ((𝑥𝑈𝑥𝑈) ↔ (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)))
65imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))))
7 sseq1 3969 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
8 eleq1 2816 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
97, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑈𝑥𝑈) ↔ (𝑦𝑈𝑦𝑈)))
109imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝑦𝑈𝑦𝑈))))
11 sseq1 3969 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑈))
12 eleq1 2816 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ∈ 𝑈))
1311, 12imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝑈𝑥𝑈) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
1413imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
15 sseq1 3969 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
16 eleq1 2816 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
1715, 16imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑈𝑥𝑈) ↔ (𝐴𝑈𝐴𝑈)))
1817imbi2d 340 . . . 4 (𝑥 = 𝐴 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝐴𝑈𝐴𝑈))))
19 wun0.1 . . . . . 6 (𝜑𝑈 ∈ WUni)
2019wun0 10647 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
2120a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))
22 ssun1 4137 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
23 sstr 3952 . . . . . . . . 9 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑈) → 𝑦𝑈)
2422, 23mpan 690 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)
2524imim1i 63 . . . . . . 7 ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈))
2619adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑈 ∈ WUni)
27 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑦𝑈)
28 simprl 770 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ⊆ 𝑈)
2928unssbd 4153 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ⊆ 𝑈)
30 vex 3448 . . . . . . . . . . . . 13 𝑧 ∈ V
3130snss 4745 . . . . . . . . . . . 12 (𝑧𝑈 ↔ {𝑧} ⊆ 𝑈)
3229, 31sylibr 234 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑧𝑈)
3326, 32wunsn 10645 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ∈ 𝑈)
3426, 27, 33wunun 10639 . . . . . . . . 9 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ∈ 𝑈)
3534exp32 420 . . . . . . . 8 (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3635a2d 29 . . . . . . 7 (𝜑 → (((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3725, 36syl5 34 . . . . . 6 (𝜑 → ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3837a2i 14 . . . . 5 ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3938a1i 11 . . . 4 (𝑦 ∈ Fin → ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
406, 10, 14, 18, 21, 39findcard2 9105 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝑈𝐴𝑈)))
412, 40mpcom 38 . 2 (𝜑 → (𝐴𝑈𝐴𝑈))
421, 41mpd 15 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  wss 3911  c0 4292  {csn 4585  Fincfn 8895  WUnicwun 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-en 8896  df-fin 8899  df-wun 10631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator