MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Structured version   Visualization version   GIF version

Theorem wunfi 10142
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunfi.2 (𝜑𝐴𝑈)
wunfi.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
wunfi (𝜑𝐴𝑈)

Proof of Theorem wunfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2 (𝜑𝐴𝑈)
2 wunfi.3 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3991 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ⊆ 𝑈))
4 eleq1 2900 . . . . . 6 (𝑥 = ∅ → (𝑥𝑈 ↔ ∅ ∈ 𝑈))
53, 4imbi12d 347 . . . . 5 (𝑥 = ∅ → ((𝑥𝑈𝑥𝑈) ↔ (∅ ⊆ 𝑈 → ∅ ∈ 𝑈)))
65imbi2d 343 . . . 4 (𝑥 = ∅ → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))))
7 sseq1 3991 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
8 eleq1 2900 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑈𝑦𝑈))
97, 8imbi12d 347 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑈𝑥𝑈) ↔ (𝑦𝑈𝑦𝑈)))
109imbi2d 343 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝑦𝑈𝑦𝑈))))
11 sseq1 3991 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑈))
12 eleq1 2900 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝑈 ↔ (𝑦 ∪ {𝑧}) ∈ 𝑈))
1311, 12imbi12d 347 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝑈𝑥𝑈) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
1413imbi2d 343 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
15 sseq1 3991 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
16 eleq1 2900 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
1715, 16imbi12d 347 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑈𝑥𝑈) ↔ (𝐴𝑈𝐴𝑈)))
1817imbi2d 343 . . . 4 (𝑥 = 𝐴 → ((𝜑 → (𝑥𝑈𝑥𝑈)) ↔ (𝜑 → (𝐴𝑈𝐴𝑈))))
19 wun0.1 . . . . . 6 (𝜑𝑈 ∈ WUni)
2019wun0 10139 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
2120a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝑈 → ∅ ∈ 𝑈))
22 ssun1 4147 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
23 sstr 3974 . . . . . . . . 9 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑈) → 𝑦𝑈)
2422, 23mpan 688 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)
2524imim1i 63 . . . . . . 7 ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈))
2619adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑈 ∈ WUni)
27 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑦𝑈)
28 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ⊆ 𝑈)
2928unssbd 4163 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ⊆ 𝑈)
30 vex 3497 . . . . . . . . . . . . 13 𝑧 ∈ V
3130snss 4717 . . . . . . . . . . . 12 (𝑧𝑈 ↔ {𝑧} ⊆ 𝑈)
3229, 31sylibr 236 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → 𝑧𝑈)
3326, 32wunsn 10137 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → {𝑧} ∈ 𝑈)
3426, 27, 33wunun 10131 . . . . . . . . 9 ((𝜑 ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈)) → (𝑦 ∪ {𝑧}) ∈ 𝑈)
3534exp32 423 . . . . . . . 8 (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3635a2d 29 . . . . . . 7 (𝜑 → (((𝑦 ∪ {𝑧}) ⊆ 𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3725, 36syl5 34 . . . . . 6 (𝜑 → ((𝑦𝑈𝑦𝑈) → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3837a2i 14 . . . . 5 ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈)))
3938a1i 11 . . . 4 (𝑦 ∈ Fin → ((𝜑 → (𝑦𝑈𝑦𝑈)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝑈 → (𝑦 ∪ {𝑧}) ∈ 𝑈))))
406, 10, 14, 18, 21, 39findcard2 8757 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝑈𝐴𝑈)))
412, 40mpcom 38 . 2 (𝜑 → (𝐴𝑈𝐴𝑈))
421, 41mpd 15 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cun 3933  wss 3935  c0 4290  {csn 4566  Fincfn 8508  WUnicwun 10121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-1o 8101  df-er 8288  df-en 8509  df-fin 8512  df-wun 10123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator