MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Structured version   Visualization version   GIF version

Theorem catcoppccl 18103
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
catcoppccl.c 𝐢 = (CatCatβ€˜π‘ˆ)
catcoppccl.b 𝐡 = (Baseβ€˜πΆ)
catcoppccl.o 𝑂 = (oppCatβ€˜π‘‹)
catcoppccl.1 (πœ‘ β†’ π‘ˆ ∈ WUni)
catcoppccl.2 (πœ‘ β†’ Ο‰ ∈ π‘ˆ)
catcoppccl.3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
Assertion
Ref Expression
catcoppccl (πœ‘ β†’ 𝑂 ∈ 𝐡)

Proof of Theorem catcoppccl
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
2 eqid 2725 . . . . . 6 (Baseβ€˜π‘‹) = (Baseβ€˜π‘‹)
3 eqid 2725 . . . . . 6 (Hom β€˜π‘‹) = (Hom β€˜π‘‹)
4 eqid 2725 . . . . . 6 (compβ€˜π‘‹) = (compβ€˜π‘‹)
5 catcoppccl.o . . . . . 6 𝑂 = (oppCatβ€˜π‘‹)
62, 3, 4, 5oppcval 17690 . . . . 5 (𝑋 ∈ 𝐡 β†’ 𝑂 = ((𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) sSet ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩))
71, 6syl 17 . . . 4 (πœ‘ β†’ 𝑂 = ((𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) sSet ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩))
8 catcoppccl.1 . . . . 5 (πœ‘ β†’ π‘ˆ ∈ WUni)
9 catcoppccl.c . . . . . . 7 𝐢 = (CatCatβ€˜π‘ˆ)
10 catcoppccl.b . . . . . . 7 𝐡 = (Baseβ€˜πΆ)
119, 10, 8, 1catcbascl 18098 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
12 homid 17390 . . . . . . . 8 Hom = Slot (Hom β€˜ndx)
13 catcoppccl.2 . . . . . . . . 9 (πœ‘ β†’ Ο‰ ∈ π‘ˆ)
148, 13wunndx 17161 . . . . . . . 8 (πœ‘ β†’ ndx ∈ π‘ˆ)
1512, 8, 14wunstr 17154 . . . . . . 7 (πœ‘ β†’ (Hom β€˜ndx) ∈ π‘ˆ)
169, 10, 8, 1catchomcl 18101 . . . . . . . 8 (πœ‘ β†’ (Hom β€˜π‘‹) ∈ π‘ˆ)
178, 16wuntpos 10755 . . . . . . 7 (πœ‘ β†’ tpos (Hom β€˜π‘‹) ∈ π‘ˆ)
188, 15, 17wunop 10743 . . . . . 6 (πœ‘ β†’ ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩ ∈ π‘ˆ)
198, 11, 18wunsets 17143 . . . . 5 (πœ‘ β†’ (𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) ∈ π‘ˆ)
20 ccoid 17392 . . . . . . 7 comp = Slot (compβ€˜ndx)
2120, 8, 14wunstr 17154 . . . . . 6 (πœ‘ β†’ (compβ€˜ndx) ∈ π‘ˆ)
229, 10, 8, 1catcbaselcl 18100 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘‹) ∈ π‘ˆ)
238, 22, 22wunxp 10745 . . . . . . . 8 (πœ‘ β†’ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) ∈ π‘ˆ)
248, 23, 22wunxp 10745 . . . . . . 7 (πœ‘ β†’ (((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) Γ— (Baseβ€˜π‘‹)) ∈ π‘ˆ)
259, 10, 8, 1catcccocl 18102 . . . . . . . . . . . . . 14 (πœ‘ β†’ (compβ€˜π‘‹) ∈ π‘ˆ)
268, 25wunrn 10750 . . . . . . . . . . . . 13 (πœ‘ β†’ ran (compβ€˜π‘‹) ∈ π‘ˆ)
278, 26wununi 10727 . . . . . . . . . . . 12 (πœ‘ β†’ βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
288, 27wundm 10749 . . . . . . . . . . 11 (πœ‘ β†’ dom βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
298, 28wuncnv 10751 . . . . . . . . . 10 (πœ‘ β†’ β—‘dom βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
308wun0 10739 . . . . . . . . . . 11 (πœ‘ β†’ βˆ… ∈ π‘ˆ)
318, 30wunsn 10737 . . . . . . . . . 10 (πœ‘ β†’ {βˆ…} ∈ π‘ˆ)
328, 29, 31wunun 10731 . . . . . . . . 9 (πœ‘ β†’ (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) ∈ π‘ˆ)
338, 27wunrn 10750 . . . . . . . . 9 (πœ‘ β†’ ran βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
348, 32, 33wunxp 10745 . . . . . . . 8 (πœ‘ β†’ ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ∈ π‘ˆ)
358, 34wunpw 10728 . . . . . . 7 (πœ‘ β†’ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ∈ π‘ˆ)
36 tposssxp 8232 . . . . . . . . . . . 12 tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) Γ— ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))
37 ovssunirn 7451 . . . . . . . . . . . . . . 15 (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† βˆͺ ran (compβ€˜π‘‹)
38 dmss 5899 . . . . . . . . . . . . . . 15 ((βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† βˆͺ ran (compβ€˜π‘‹) β†’ dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† dom βˆͺ ran (compβ€˜π‘‹))
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† dom βˆͺ ran (compβ€˜π‘‹)
40 cnvss 5869 . . . . . . . . . . . . . 14 (dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† dom βˆͺ ran (compβ€˜π‘‹) β†’ β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† β—‘dom βˆͺ ran (compβ€˜π‘‹))
41 unss1 4173 . . . . . . . . . . . . . 14 (β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† β—‘dom βˆͺ ran (compβ€˜π‘‹) β†’ (β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) βŠ† (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}))
4239, 40, 41mp2b 10 . . . . . . . . . . . . 13 (β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) βŠ† (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…})
4337rnssi 5936 . . . . . . . . . . . . 13 ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ran βˆͺ ran (compβ€˜π‘‹)
44 xpss12 5687 . . . . . . . . . . . . 13 (((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) βŠ† (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) ∧ ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ran βˆͺ ran (compβ€˜π‘‹)) β†’ ((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) Γ— ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
4542, 43, 44mp2an 690 . . . . . . . . . . . 12 ((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) Γ— ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))
4636, 45sstri 3982 . . . . . . . . . . 11 tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))
47 elpw2g 5341 . . . . . . . . . . . 12 (((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ∈ π‘ˆ β†’ (tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ↔ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))))
4834, 47syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ↔ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))))
4946, 48mpbiri 257 . . . . . . . . . 10 (πœ‘ β†’ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
5049ralrimivw 3140 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘¦ ∈ (Baseβ€˜π‘‹)tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
5150ralrimivw 3140 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹))βˆ€π‘¦ ∈ (Baseβ€˜π‘‹)tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
52 eqid 2725 . . . . . . . . 9 (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) = (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))
5352fmpo 8068 . . . . . . . 8 (βˆ€π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹))βˆ€π‘¦ ∈ (Baseβ€˜π‘‹)tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ↔ (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))):(((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) Γ— (Baseβ€˜π‘‹))βŸΆπ’« ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
5451, 53sylib 217 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))):(((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) Γ— (Baseβ€˜π‘‹))βŸΆπ’« ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
558, 24, 35, 54wunf 10748 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) ∈ π‘ˆ)
568, 21, 55wunop 10743 . . . . 5 (πœ‘ β†’ ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩ ∈ π‘ˆ)
578, 19, 56wunsets 17143 . . . 4 (πœ‘ β†’ ((𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) sSet ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩) ∈ π‘ˆ)
587, 57eqeltrd 2825 . . 3 (πœ‘ β†’ 𝑂 ∈ π‘ˆ)
599, 10, 8catcbas 18087 . . . . . 6 (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Cat))
601, 59eleqtrd 2827 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (π‘ˆ ∩ Cat))
6160elin2d 4193 . . . 4 (πœ‘ β†’ 𝑋 ∈ Cat)
625oppccat 17701 . . . 4 (𝑋 ∈ Cat β†’ 𝑂 ∈ Cat)
6361, 62syl 17 . . 3 (πœ‘ β†’ 𝑂 ∈ Cat)
6458, 63elind 4188 . 2 (πœ‘ β†’ 𝑂 ∈ (π‘ˆ ∩ Cat))
6564, 59eleqtrrd 2828 1 (πœ‘ β†’ 𝑂 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4318  π’« cpw 4598  {csn 4624  βŸ¨cop 4630  βˆͺ cuni 4903   Γ— cxp 5670  β—‘ccnv 5671  dom cdm 5672  ran crn 5673  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7415   ∈ cmpo 7417  Ο‰com 7867  1st c1st 7987  2nd c2nd 7988  tpos ctpos 8227  WUnicwun 10721   sSet csts 17129  ndxcnx 17159  Basecbs 17177  Hom chom 17241  compcco 17242  Catccat 17641  oppCatcoppc 17688  CatCatccatc 18084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-tpos 8228  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-omul 8488  df-er 8721  df-ec 8723  df-qs 8727  df-map 8843  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-wun 10723  df-ni 10893  df-pli 10894  df-mi 10895  df-lti 10896  df-plpq 10929  df-mpq 10930  df-ltpq 10931  df-enq 10932  df-nq 10933  df-erq 10934  df-plq 10935  df-mq 10936  df-1nq 10937  df-rq 10938  df-ltnq 10939  df-np 11002  df-plp 11004  df-ltp 11006  df-enr 11076  df-nr 11077  df-c 11142  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-hom 17254  df-cco 17255  df-cat 17645  df-cid 17646  df-oppc 17689  df-catc 18085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator