MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Structured version   Visualization version   GIF version

Theorem catcoppccl 18079
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
catcoppccl.c 𝐢 = (CatCatβ€˜π‘ˆ)
catcoppccl.b 𝐡 = (Baseβ€˜πΆ)
catcoppccl.o 𝑂 = (oppCatβ€˜π‘‹)
catcoppccl.1 (πœ‘ β†’ π‘ˆ ∈ WUni)
catcoppccl.2 (πœ‘ β†’ Ο‰ ∈ π‘ˆ)
catcoppccl.3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
Assertion
Ref Expression
catcoppccl (πœ‘ β†’ 𝑂 ∈ 𝐡)

Proof of Theorem catcoppccl
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
2 eqid 2726 . . . . . 6 (Baseβ€˜π‘‹) = (Baseβ€˜π‘‹)
3 eqid 2726 . . . . . 6 (Hom β€˜π‘‹) = (Hom β€˜π‘‹)
4 eqid 2726 . . . . . 6 (compβ€˜π‘‹) = (compβ€˜π‘‹)
5 catcoppccl.o . . . . . 6 𝑂 = (oppCatβ€˜π‘‹)
62, 3, 4, 5oppcval 17666 . . . . 5 (𝑋 ∈ 𝐡 β†’ 𝑂 = ((𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) sSet ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩))
71, 6syl 17 . . . 4 (πœ‘ β†’ 𝑂 = ((𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) sSet ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩))
8 catcoppccl.1 . . . . 5 (πœ‘ β†’ π‘ˆ ∈ WUni)
9 catcoppccl.c . . . . . . 7 𝐢 = (CatCatβ€˜π‘ˆ)
10 catcoppccl.b . . . . . . 7 𝐡 = (Baseβ€˜πΆ)
119, 10, 8, 1catcbascl 18074 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
12 homid 17366 . . . . . . . 8 Hom = Slot (Hom β€˜ndx)
13 catcoppccl.2 . . . . . . . . 9 (πœ‘ β†’ Ο‰ ∈ π‘ˆ)
148, 13wunndx 17137 . . . . . . . 8 (πœ‘ β†’ ndx ∈ π‘ˆ)
1512, 8, 14wunstr 17130 . . . . . . 7 (πœ‘ β†’ (Hom β€˜ndx) ∈ π‘ˆ)
169, 10, 8, 1catchomcl 18077 . . . . . . . 8 (πœ‘ β†’ (Hom β€˜π‘‹) ∈ π‘ˆ)
178, 16wuntpos 10731 . . . . . . 7 (πœ‘ β†’ tpos (Hom β€˜π‘‹) ∈ π‘ˆ)
188, 15, 17wunop 10719 . . . . . 6 (πœ‘ β†’ ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩ ∈ π‘ˆ)
198, 11, 18wunsets 17119 . . . . 5 (πœ‘ β†’ (𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) ∈ π‘ˆ)
20 ccoid 17368 . . . . . . 7 comp = Slot (compβ€˜ndx)
2120, 8, 14wunstr 17130 . . . . . 6 (πœ‘ β†’ (compβ€˜ndx) ∈ π‘ˆ)
229, 10, 8, 1catcbaselcl 18076 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘‹) ∈ π‘ˆ)
238, 22, 22wunxp 10721 . . . . . . . 8 (πœ‘ β†’ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) ∈ π‘ˆ)
248, 23, 22wunxp 10721 . . . . . . 7 (πœ‘ β†’ (((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) Γ— (Baseβ€˜π‘‹)) ∈ π‘ˆ)
259, 10, 8, 1catcccocl 18078 . . . . . . . . . . . . . 14 (πœ‘ β†’ (compβ€˜π‘‹) ∈ π‘ˆ)
268, 25wunrn 10726 . . . . . . . . . . . . 13 (πœ‘ β†’ ran (compβ€˜π‘‹) ∈ π‘ˆ)
278, 26wununi 10703 . . . . . . . . . . . 12 (πœ‘ β†’ βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
288, 27wundm 10725 . . . . . . . . . . 11 (πœ‘ β†’ dom βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
298, 28wuncnv 10727 . . . . . . . . . 10 (πœ‘ β†’ β—‘dom βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
308wun0 10715 . . . . . . . . . . 11 (πœ‘ β†’ βˆ… ∈ π‘ˆ)
318, 30wunsn 10713 . . . . . . . . . 10 (πœ‘ β†’ {βˆ…} ∈ π‘ˆ)
328, 29, 31wunun 10707 . . . . . . . . 9 (πœ‘ β†’ (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) ∈ π‘ˆ)
338, 27wunrn 10726 . . . . . . . . 9 (πœ‘ β†’ ran βˆͺ ran (compβ€˜π‘‹) ∈ π‘ˆ)
348, 32, 33wunxp 10721 . . . . . . . 8 (πœ‘ β†’ ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ∈ π‘ˆ)
358, 34wunpw 10704 . . . . . . 7 (πœ‘ β†’ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ∈ π‘ˆ)
36 tposssxp 8216 . . . . . . . . . . . 12 tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) Γ— ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))
37 ovssunirn 7441 . . . . . . . . . . . . . . 15 (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† βˆͺ ran (compβ€˜π‘‹)
38 dmss 5896 . . . . . . . . . . . . . . 15 ((βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† βˆͺ ran (compβ€˜π‘‹) β†’ dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† dom βˆͺ ran (compβ€˜π‘‹))
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† dom βˆͺ ran (compβ€˜π‘‹)
40 cnvss 5866 . . . . . . . . . . . . . 14 (dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† dom βˆͺ ran (compβ€˜π‘‹) β†’ β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† β—‘dom βˆͺ ran (compβ€˜π‘‹))
41 unss1 4174 . . . . . . . . . . . . . 14 (β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† β—‘dom βˆͺ ran (compβ€˜π‘‹) β†’ (β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) βŠ† (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}))
4239, 40, 41mp2b 10 . . . . . . . . . . . . 13 (β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) βŠ† (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…})
4337rnssi 5933 . . . . . . . . . . . . 13 ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ran βˆͺ ran (compβ€˜π‘‹)
44 xpss12 5684 . . . . . . . . . . . . 13 (((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) βŠ† (β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) ∧ ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ran βˆͺ ran (compβ€˜π‘‹)) β†’ ((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) Γ— ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
4542, 43, 44mp2an 689 . . . . . . . . . . . 12 ((β—‘dom (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βˆͺ {βˆ…}) Γ— ran (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))
4636, 45sstri 3986 . . . . . . . . . . 11 tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))
47 elpw2g 5337 . . . . . . . . . . . 12 (((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ∈ π‘ˆ β†’ (tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ↔ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))))
4834, 47syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ↔ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) βŠ† ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹))))
4946, 48mpbiri 258 . . . . . . . . . 10 (πœ‘ β†’ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
5049ralrimivw 3144 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘¦ ∈ (Baseβ€˜π‘‹)tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
5150ralrimivw 3144 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹))βˆ€π‘¦ ∈ (Baseβ€˜π‘‹)tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
52 eqid 2726 . . . . . . . . 9 (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) = (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))
5352fmpo 8053 . . . . . . . 8 (βˆ€π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹))βˆ€π‘¦ ∈ (Baseβ€˜π‘‹)tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)) ∈ 𝒫 ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)) ↔ (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))):(((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) Γ— (Baseβ€˜π‘‹))βŸΆπ’« ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
5451, 53sylib 217 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))):(((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)) Γ— (Baseβ€˜π‘‹))βŸΆπ’« ((β—‘dom βˆͺ ran (compβ€˜π‘‹) βˆͺ {βˆ…}) Γ— ran βˆͺ ran (compβ€˜π‘‹)))
558, 24, 35, 54wunf 10724 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯))) ∈ π‘ˆ)
568, 21, 55wunop 10719 . . . . 5 (πœ‘ β†’ ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩ ∈ π‘ˆ)
578, 19, 56wunsets 17119 . . . 4 (πœ‘ β†’ ((𝑋 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘‹)⟩) sSet ⟨(compβ€˜ndx), (π‘₯ ∈ ((Baseβ€˜π‘‹) Γ— (Baseβ€˜π‘‹)), 𝑦 ∈ (Baseβ€˜π‘‹) ↦ tpos (βŸ¨π‘¦, (2nd β€˜π‘₯)⟩(compβ€˜π‘‹)(1st β€˜π‘₯)))⟩) ∈ π‘ˆ)
587, 57eqeltrd 2827 . . 3 (πœ‘ β†’ 𝑂 ∈ π‘ˆ)
599, 10, 8catcbas 18063 . . . . . 6 (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Cat))
601, 59eleqtrd 2829 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (π‘ˆ ∩ Cat))
6160elin2d 4194 . . . 4 (πœ‘ β†’ 𝑋 ∈ Cat)
625oppccat 17677 . . . 4 (𝑋 ∈ Cat β†’ 𝑂 ∈ Cat)
6361, 62syl 17 . . 3 (πœ‘ β†’ 𝑂 ∈ Cat)
6458, 63elind 4189 . 2 (πœ‘ β†’ 𝑂 ∈ (π‘ˆ ∩ Cat))
6564, 59eleqtrrd 2830 1 (πœ‘ β†’ 𝑂 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055   βˆͺ cun 3941   ∩ cin 3942   βŠ† wss 3943  βˆ…c0 4317  π’« cpw 4597  {csn 4623  βŸ¨cop 4629  βˆͺ cuni 4902   Γ— cxp 5667  β—‘ccnv 5668  dom cdm 5669  ran crn 5670  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  Ο‰com 7852  1st c1st 7972  2nd c2nd 7973  tpos ctpos 8211  WUnicwun 10697   sSet csts 17105  ndxcnx 17135  Basecbs 17153  Hom chom 17217  compcco 17218  Catccat 17617  oppCatcoppc 17664  CatCatccatc 18060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-tpos 8212  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-omul 8472  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-wun 10699  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-mpq 10906  df-ltpq 10907  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-mq 10912  df-1nq 10913  df-rq 10914  df-ltnq 10915  df-np 10978  df-plp 10980  df-ltp 10982  df-enr 11052  df-nr 11053  df-c 11118  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-hom 17230  df-cco 17231  df-cat 17621  df-cid 17622  df-oppc 17665  df-catc 18061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator