Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Structured version   Visualization version   GIF version

Theorem catcoppccl 17109
 Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcoppccl.c 𝐶 = (CatCat‘𝑈)
catcoppccl.b 𝐵 = (Base‘𝐶)
catcoppccl.o 𝑂 = (oppCat‘𝑋)
catcoppccl.1 (𝜑𝑈 ∈ WUni)
catcoppccl.2 (𝜑 → ω ∈ 𝑈)
catcoppccl.3 (𝜑𝑋𝐵)
Assertion
Ref Expression
catcoppccl (𝜑𝑂𝐵)

Proof of Theorem catcoppccl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5 (𝜑𝑋𝐵)
2 eqid 2824 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2824 . . . . . 6 (Hom ‘𝑋) = (Hom ‘𝑋)
4 eqid 2824 . . . . . 6 (comp‘𝑋) = (comp‘𝑋)
5 catcoppccl.o . . . . . 6 𝑂 = (oppCat‘𝑋)
62, 3, 4, 5oppcval 16724 . . . . 5 (𝑋𝐵𝑂 = ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩))
71, 6syl 17 . . . 4 (𝜑𝑂 = ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩))
8 catcoppccl.1 . . . . 5 (𝜑𝑈 ∈ WUni)
9 inss1 4056 . . . . . . 7 (𝑈 ∩ Cat) ⊆ 𝑈
10 catcoppccl.c . . . . . . . . 9 𝐶 = (CatCat‘𝑈)
11 catcoppccl.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
1210, 11, 8catcbas 17098 . . . . . . . 8 (𝜑𝐵 = (𝑈 ∩ Cat))
131, 12eleqtrd 2907 . . . . . . 7 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
149, 13sseldi 3824 . . . . . 6 (𝜑𝑋𝑈)
15 df-hom 16328 . . . . . . . 8 Hom = Slot 14
16 catcoppccl.2 . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
178, 16wunndx 16242 . . . . . . . 8 (𝜑 → ndx ∈ 𝑈)
1815, 8, 17wunstr 16245 . . . . . . 7 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
1915, 8, 14wunstr 16245 . . . . . . . 8 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
208, 19wuntpos 9870 . . . . . . 7 (𝜑 → tpos (Hom ‘𝑋) ∈ 𝑈)
218, 18, 20wunop 9858 . . . . . 6 (𝜑 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩ ∈ 𝑈)
228, 14, 21wunsets 16262 . . . . 5 (𝜑 → (𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) ∈ 𝑈)
23 df-cco 16329 . . . . . . 7 comp = Slot 15
2423, 8, 17wunstr 16245 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
25 df-base 16227 . . . . . . . . . 10 Base = Slot 1
2625, 8, 14wunstr 16245 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
278, 26, 26wunxp 9860 . . . . . . . 8 (𝜑 → ((Base‘𝑋) × (Base‘𝑋)) ∈ 𝑈)
288, 27, 26wunxp 9860 . . . . . . 7 (𝜑 → (((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋)) ∈ 𝑈)
2923, 8, 14wunstr 16245 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
308, 29wunrn 9865 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
318, 30wununi 9842 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
328, 31wundm 9864 . . . . . . . . . . 11 (𝜑 → dom ran (comp‘𝑋) ∈ 𝑈)
338, 32wuncnv 9866 . . . . . . . . . 10 (𝜑dom ran (comp‘𝑋) ∈ 𝑈)
348wun0 9854 . . . . . . . . . . 11 (𝜑 → ∅ ∈ 𝑈)
358, 34wunsn 9852 . . . . . . . . . 10 (𝜑 → {∅} ∈ 𝑈)
368, 33, 35wunun 9846 . . . . . . . . 9 (𝜑 → (dom ran (comp‘𝑋) ∪ {∅}) ∈ 𝑈)
378, 31wunrn 9865 . . . . . . . . 9 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
388, 36, 37wunxp 9860 . . . . . . . 8 (𝜑 → ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈)
398, 38wunpw 9843 . . . . . . 7 (𝜑 → 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈)
40 tposssxp 7620 . . . . . . . . . . . 12 tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))
41 ovssunirn 6939 . . . . . . . . . . . . . . 15 (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋)
42 dmss 5554 . . . . . . . . . . . . . . 15 ((⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋) → dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋)
44 cnvss 5526 . . . . . . . . . . . . . 14 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋) → dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋))
45 unss1 4008 . . . . . . . . . . . . . 14 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋) → (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅}))
4643, 44, 45mp2b 10 . . . . . . . . . . . . 13 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅})
47 rnss 5585 . . . . . . . . . . . . . 14 ((⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋) → ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋))
4841, 47ax-mp 5 . . . . . . . . . . . . 13 ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋)
49 xpss12 5356 . . . . . . . . . . . . 13 (((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅}) ∧ ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋)) → ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5046, 48, 49mp2an 685 . . . . . . . . . . . 12 ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))
5140, 50sstri 3835 . . . . . . . . . . 11 tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))
52 elpw2g 5048 . . . . . . . . . . . 12 (((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈 → (tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))))
5338, 52syl 17 . . . . . . . . . . 11 (𝜑 → (tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))))
5451, 53mpbiri 250 . . . . . . . . . 10 (𝜑 → tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5554ralrimivw 3175 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5655ralrimivw 3175 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
57 eqid 2824 . . . . . . . . 9 (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) = (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))
5857fmpt2 7499 . . . . . . . 8 (∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5956, 58sylib 210 . . . . . . 7 (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
608, 28, 39, 59wunf 9863 . . . . . 6 (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ∈ 𝑈)
618, 24, 60wunop 9858 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩ ∈ 𝑈)
628, 22, 61wunsets 16262 . . . 4 (𝜑 → ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩) ∈ 𝑈)
637, 62eqeltrd 2905 . . 3 (𝜑𝑂𝑈)
64 inss2 4057 . . . . 5 (𝑈 ∩ Cat) ⊆ Cat
6564, 13sseldi 3824 . . . 4 (𝜑𝑋 ∈ Cat)
665oppccat 16733 . . . 4 (𝑋 ∈ Cat → 𝑂 ∈ Cat)
6765, 66syl 17 . . 3 (𝜑𝑂 ∈ Cat)
6863, 67elind 4024 . 2 (𝜑𝑂 ∈ (𝑈 ∩ Cat))
6968, 12eleqtrrd 2908 1 (𝜑𝑂𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   = wceq 1658   ∈ wcel 2166  ∀wral 3116   ∪ cun 3795   ∩ cin 3796   ⊆ wss 3797  ∅c0 4143  𝒫 cpw 4377  {csn 4396  ⟨cop 4402  ∪ cuni 4657   × cxp 5339  ◡ccnv 5340  dom cdm 5341  ran crn 5342  ⟶wf 6118  ‘cfv 6122  (class class class)co 6904   ↦ cmpt2 6906  ωcom 7325  1st c1st 7425  2nd c2nd 7426  tpos ctpos 7615  WUnicwun 9836  1c1 10252  4c4 11407  5c5 11408  ;cdc 11820  ndxcnx 16218   sSet csts 16219  Basecbs 16221  Hom chom 16315  compcco 16316  Catccat 16676  oppCatcoppc 16722  CatCatccatc 17095 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-tpos 7616  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-omul 7830  df-er 8008  df-ec 8010  df-qs 8014  df-map 8123  df-pm 8124  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-wun 9838  df-ni 10008  df-pli 10009  df-mi 10010  df-lti 10011  df-plpq 10044  df-mpq 10045  df-ltpq 10046  df-enq 10047  df-nq 10048  df-erq 10049  df-plq 10050  df-mq 10051  df-1nq 10052  df-rq 10053  df-ltnq 10054  df-np 10117  df-plp 10119  df-ltp 10121  df-enr 10191  df-nr 10192  df-c 10257  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-fz 12619  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-hom 16328  df-cco 16329  df-cat 16680  df-cid 16681  df-oppc 16723  df-catc 17096 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator