MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Structured version   Visualization version   GIF version

Theorem catcoppccl 18128
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
catcoppccl.c 𝐶 = (CatCat‘𝑈)
catcoppccl.b 𝐵 = (Base‘𝐶)
catcoppccl.o 𝑂 = (oppCat‘𝑋)
catcoppccl.1 (𝜑𝑈 ∈ WUni)
catcoppccl.2 (𝜑 → ω ∈ 𝑈)
catcoppccl.3 (𝜑𝑋𝐵)
Assertion
Ref Expression
catcoppccl (𝜑𝑂𝐵)

Proof of Theorem catcoppccl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5 (𝜑𝑋𝐵)
2 eqid 2735 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2735 . . . . . 6 (Hom ‘𝑋) = (Hom ‘𝑋)
4 eqid 2735 . . . . . 6 (comp‘𝑋) = (comp‘𝑋)
5 catcoppccl.o . . . . . 6 𝑂 = (oppCat‘𝑋)
62, 3, 4, 5oppcval 17723 . . . . 5 (𝑋𝐵𝑂 = ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩))
71, 6syl 17 . . . 4 (𝜑𝑂 = ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩))
8 catcoppccl.1 . . . . 5 (𝜑𝑈 ∈ WUni)
9 catcoppccl.c . . . . . . 7 𝐶 = (CatCat‘𝑈)
10 catcoppccl.b . . . . . . 7 𝐵 = (Base‘𝐶)
119, 10, 8, 1catcbascl 18123 . . . . . 6 (𝜑𝑋𝑈)
12 homid 17424 . . . . . . . 8 Hom = Slot (Hom ‘ndx)
13 catcoppccl.2 . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
148, 13wunndx 17212 . . . . . . . 8 (𝜑 → ndx ∈ 𝑈)
1512, 8, 14wunstr 17205 . . . . . . 7 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
169, 10, 8, 1catchomcl 18126 . . . . . . . 8 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
178, 16wuntpos 10746 . . . . . . 7 (𝜑 → tpos (Hom ‘𝑋) ∈ 𝑈)
188, 15, 17wunop 10734 . . . . . 6 (𝜑 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩ ∈ 𝑈)
198, 11, 18wunsets 17194 . . . . 5 (𝜑 → (𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) ∈ 𝑈)
20 ccoid 17426 . . . . . . 7 comp = Slot (comp‘ndx)
2120, 8, 14wunstr 17205 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
229, 10, 8, 1catcbaselcl 18125 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
238, 22, 22wunxp 10736 . . . . . . . 8 (𝜑 → ((Base‘𝑋) × (Base‘𝑋)) ∈ 𝑈)
248, 23, 22wunxp 10736 . . . . . . 7 (𝜑 → (((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋)) ∈ 𝑈)
259, 10, 8, 1catcccocl 18127 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
268, 25wunrn 10741 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
278, 26wununi 10718 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
288, 27wundm 10740 . . . . . . . . . . 11 (𝜑 → dom ran (comp‘𝑋) ∈ 𝑈)
298, 28wuncnv 10742 . . . . . . . . . 10 (𝜑dom ran (comp‘𝑋) ∈ 𝑈)
308wun0 10730 . . . . . . . . . . 11 (𝜑 → ∅ ∈ 𝑈)
318, 30wunsn 10728 . . . . . . . . . 10 (𝜑 → {∅} ∈ 𝑈)
328, 29, 31wunun 10722 . . . . . . . . 9 (𝜑 → (dom ran (comp‘𝑋) ∪ {∅}) ∈ 𝑈)
338, 27wunrn 10741 . . . . . . . . 9 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
348, 32, 33wunxp 10736 . . . . . . . 8 (𝜑 → ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈)
358, 34wunpw 10719 . . . . . . 7 (𝜑 → 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈)
36 tposssxp 8227 . . . . . . . . . . . 12 tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))
37 ovssunirn 7439 . . . . . . . . . . . . . . 15 (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋)
38 dmss 5882 . . . . . . . . . . . . . . 15 ((⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran (comp‘𝑋) → dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋))
3937, 38ax-mp 5 . . . . . . . . . . . . . 14 dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋)
40 cnvss 5852 . . . . . . . . . . . . . 14 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋) → dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋))
41 unss1 4160 . . . . . . . . . . . . . 14 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ dom ran (comp‘𝑋) → (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅}))
4239, 40, 41mp2b 10 . . . . . . . . . . . . 13 (dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅})
4337rnssi 5920 . . . . . . . . . . . . 13 ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋)
44 xpss12 5669 . . . . . . . . . . . . 13 (((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) ⊆ (dom ran (comp‘𝑋) ∪ {∅}) ∧ ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ran ran (comp‘𝑋)) → ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
4542, 43, 44mp2an 692 . . . . . . . . . . . 12 ((dom (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∪ {∅}) × ran (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))
4636, 45sstri 3968 . . . . . . . . . . 11 tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))
47 elpw2g 5303 . . . . . . . . . . . 12 (((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ∈ 𝑈 → (tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))))
4834, 47syl 17 . . . . . . . . . . 11 (𝜑 → (tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ⊆ ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋))))
4946, 48mpbiri 258 . . . . . . . . . 10 (𝜑 → tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5049ralrimivw 3136 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5150ralrimivw 3136 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
52 eqid 2735 . . . . . . . . 9 (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) = (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))
5352fmpo 8065 . . . . . . . 8 (∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)) ∈ 𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)) ↔ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
5451, 53sylib 218 . . . . . . 7 (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((dom ran (comp‘𝑋) ∪ {∅}) × ran ran (comp‘𝑋)))
558, 24, 35, 54wunf 10739 . . . . . 6 (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥))) ∈ 𝑈)
568, 21, 55wunop 10734 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩ ∈ 𝑈)
578, 19, 56wunsets 17194 . . . 4 (𝜑 → ((𝑋 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑋)⟩) sSet ⟨(comp‘ndx), (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (⟨𝑦, (2nd𝑥)⟩(comp‘𝑋)(1st𝑥)))⟩) ∈ 𝑈)
587, 57eqeltrd 2834 . . 3 (𝜑𝑂𝑈)
599, 10, 8catcbas 18112 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Cat))
601, 59eleqtrd 2836 . . . . 5 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
6160elin2d 4180 . . . 4 (𝜑𝑋 ∈ Cat)
625oppccat 17732 . . . 4 (𝑋 ∈ Cat → 𝑂 ∈ Cat)
6361, 62syl 17 . . 3 (𝜑𝑂 ∈ Cat)
6458, 63elind 4175 . 2 (𝜑𝑂 ∈ (𝑈 ∩ Cat))
6564, 59eleqtrrd 2837 1 (𝜑𝑂𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   cuni 4883   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  wf 6526  cfv 6530  (class class class)co 7403  cmpo 7405  ωcom 7859  1st c1st 7984  2nd c2nd 7985  tpos ctpos 8222  WUnicwun 10712   sSet csts 17180  ndxcnx 17210  Basecbs 17226  Hom chom 17280  compcco 17281  Catccat 17674  oppCatcoppc 17721  CatCatccatc 18109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-omul 8483  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-wun 10714  df-ni 10884  df-pli 10885  df-mi 10886  df-lti 10887  df-plpq 10920  df-mpq 10921  df-ltpq 10922  df-enq 10923  df-nq 10924  df-erq 10925  df-plq 10926  df-mq 10927  df-1nq 10928  df-rq 10929  df-ltnq 10930  df-np 10993  df-plp 10995  df-ltp 10997  df-enr 11067  df-nr 11068  df-c 11133  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-hom 17293  df-cco 17294  df-cat 17678  df-cid 17679  df-oppc 17722  df-catc 18110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator