Step | Hyp | Ref
| Expression |
1 | | catcoppccl.3 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
3 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝑋) = (Hom
‘𝑋) |
4 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝑋) =
(comp‘𝑋) |
5 | | catcoppccl.o |
. . . . . 6
⊢ 𝑂 = (oppCat‘𝑋) |
6 | 2, 3, 4, 5 | oppcval 17422 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑂 = ((𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) sSet
〈(comp‘ndx), (𝑥
∈ ((Base‘𝑋)
× (Base‘𝑋)),
𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉)) |
7 | 1, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑂 = ((𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) sSet
〈(comp‘ndx), (𝑥
∈ ((Base‘𝑋)
× (Base‘𝑋)),
𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉)) |
8 | | catcoppccl.1 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ WUni) |
9 | | catcoppccl.c |
. . . . . . 7
⊢ 𝐶 = (CatCat‘𝑈) |
10 | | catcoppccl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
11 | 9, 10, 8, 1 | catcbascl 17827 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
12 | | homid 17122 |
. . . . . . . 8
⊢ Hom =
Slot (Hom ‘ndx) |
13 | | catcoppccl.2 |
. . . . . . . . 9
⊢ (𝜑 → ω ∈ 𝑈) |
14 | 8, 13 | wunndx 16896 |
. . . . . . . 8
⊢ (𝜑 → ndx ∈ 𝑈) |
15 | 12, 8, 14 | wunstr 16889 |
. . . . . . 7
⊢ (𝜑 → (Hom ‘ndx) ∈
𝑈) |
16 | 9, 10, 8, 1 | catchomcl 17830 |
. . . . . . . 8
⊢ (𝜑 → (Hom ‘𝑋) ∈ 𝑈) |
17 | 8, 16 | wuntpos 10490 |
. . . . . . 7
⊢ (𝜑 → tpos (Hom ‘𝑋) ∈ 𝑈) |
18 | 8, 15, 17 | wunop 10478 |
. . . . . 6
⊢ (𝜑 → 〈(Hom ‘ndx),
tpos (Hom ‘𝑋)〉
∈ 𝑈) |
19 | 8, 11, 18 | wunsets 16878 |
. . . . 5
⊢ (𝜑 → (𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) ∈
𝑈) |
20 | | ccoid 17124 |
. . . . . . 7
⊢ comp =
Slot (comp‘ndx) |
21 | 20, 8, 14 | wunstr 16889 |
. . . . . 6
⊢ (𝜑 → (comp‘ndx) ∈
𝑈) |
22 | 9, 10, 8, 1 | catcbaselcl 17829 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑋) ∈ 𝑈) |
23 | 8, 22, 22 | wunxp 10480 |
. . . . . . . 8
⊢ (𝜑 → ((Base‘𝑋) × (Base‘𝑋)) ∈ 𝑈) |
24 | 8, 23, 22 | wunxp 10480 |
. . . . . . 7
⊢ (𝜑 → (((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋)) ∈ 𝑈) |
25 | 9, 10, 8, 1 | catcccocl 17831 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (comp‘𝑋) ∈ 𝑈) |
26 | 8, 25 | wunrn 10485 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (comp‘𝑋) ∈ 𝑈) |
27 | 8, 26 | wununi 10462 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ran (comp‘𝑋) ∈ 𝑈) |
28 | 8, 27 | wundm 10484 |
. . . . . . . . . . 11
⊢ (𝜑 → dom ∪ ran (comp‘𝑋) ∈ 𝑈) |
29 | 8, 28 | wuncnv 10486 |
. . . . . . . . . 10
⊢ (𝜑 → ◡dom ∪ ran
(comp‘𝑋) ∈ 𝑈) |
30 | 8 | wun0 10474 |
. . . . . . . . . . 11
⊢ (𝜑 → ∅ ∈ 𝑈) |
31 | 8, 30 | wunsn 10472 |
. . . . . . . . . 10
⊢ (𝜑 → {∅} ∈ 𝑈) |
32 | 8, 29, 31 | wunun 10466 |
. . . . . . . . 9
⊢ (𝜑 → (◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) ∈ 𝑈) |
33 | 8, 27 | wunrn 10485 |
. . . . . . . . 9
⊢ (𝜑 → ran ∪ ran (comp‘𝑋) ∈ 𝑈) |
34 | 8, 32, 33 | wunxp 10480 |
. . . . . . . 8
⊢ (𝜑 → ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ∈ 𝑈) |
35 | 8, 34 | wunpw 10463 |
. . . . . . 7
⊢ (𝜑 → 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ∈ 𝑈) |
36 | | tposssxp 8046 |
. . . . . . . . . . . 12
⊢ tpos
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) × ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) |
37 | | ovssunirn 7311 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑦,
(2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ∪ ran
(comp‘𝑋) |
38 | | dmss 5811 |
. . . . . . . . . . . . . . 15
⊢
((〈𝑦,
(2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ∪ ran
(comp‘𝑋) → dom
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ dom ∪
ran (comp‘𝑋)) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ dom
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ dom ∪
ran (comp‘𝑋) |
40 | | cnvss 5781 |
. . . . . . . . . . . . . 14
⊢ (dom
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ dom ∪
ran (comp‘𝑋) →
◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ◡dom ∪ ran
(comp‘𝑋)) |
41 | | unss1 4113 |
. . . . . . . . . . . . . 14
⊢ (◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ◡dom ∪ ran
(comp‘𝑋) →
(◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) ⊆ (◡dom ∪ ran
(comp‘𝑋) ∪
{∅})) |
42 | 39, 40, 41 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ (◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) ⊆ (◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) |
43 | 37 | rnssi 5849 |
. . . . . . . . . . . . 13
⊢ ran
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ran ∪
ran (comp‘𝑋) |
44 | | xpss12 5604 |
. . . . . . . . . . . . 13
⊢ (((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) ⊆ (◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) ∧ ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ran ∪
ran (comp‘𝑋)) →
((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) × ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
45 | 42, 43, 44 | mp2an 689 |
. . . . . . . . . . . 12
⊢ ((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) × ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) |
46 | 36, 45 | sstri 3930 |
. . . . . . . . . . 11
⊢ tpos
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) |
47 | | elpw2g 5268 |
. . . . . . . . . . . 12
⊢ (((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ∈ 𝑈 → (tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ↔ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)))) |
48 | 34, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ↔ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)))) |
49 | 46, 48 | mpbiri 257 |
. . . . . . . . . 10
⊢ (𝜑 → tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
50 | 49 | ralrimivw 3104 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑋)tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
51 | 50 | ralrimivw 3104 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
52 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) = (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) |
53 | 52 | fmpo 7908 |
. . . . . . . 8
⊢
(∀𝑥 ∈
((Base‘𝑋) ×
(Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ↔ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
54 | 51, 53 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
55 | 8, 24, 35, 54 | wunf 10483 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) ∈ 𝑈) |
56 | 8, 21, 55 | wunop 10478 |
. . . . 5
⊢ (𝜑 → 〈(comp‘ndx),
(𝑥 ∈
((Base‘𝑋) ×
(Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉 ∈ 𝑈) |
57 | 8, 19, 56 | wunsets 16878 |
. . . 4
⊢ (𝜑 → ((𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) sSet
〈(comp‘ndx), (𝑥
∈ ((Base‘𝑋)
× (Base‘𝑋)),
𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉) ∈ 𝑈) |
58 | 7, 57 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → 𝑂 ∈ 𝑈) |
59 | 9, 10, 8 | catcbas 17816 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
60 | 1, 59 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
61 | 60 | elin2d 4133 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Cat) |
62 | 5 | oppccat 17433 |
. . . 4
⊢ (𝑋 ∈ Cat → 𝑂 ∈ Cat) |
63 | 61, 62 | syl 17 |
. . 3
⊢ (𝜑 → 𝑂 ∈ Cat) |
64 | 58, 63 | elind 4128 |
. 2
⊢ (𝜑 → 𝑂 ∈ (𝑈 ∩ Cat)) |
65 | 64, 59 | eleqtrrd 2842 |
1
⊢ (𝜑 → 𝑂 ∈ 𝐵) |