MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntpos Structured version   Visualization version   GIF version

Theorem wuntpos 10663
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wuntpos (𝜑 → tpos 𝐴𝑈)

Proof of Theorem wuntpos
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . . 6 (𝜑𝐴𝑈)
31, 2wundm 10657 . . . . 5 (𝜑 → dom 𝐴𝑈)
41, 3wuncnv 10659 . . . 4 (𝜑dom 𝐴𝑈)
51wun0 10647 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
61, 5wunsn 10645 . . . 4 (𝜑 → {∅} ∈ 𝑈)
71, 4, 6wunun 10639 . . 3 (𝜑 → (dom 𝐴 ∪ {∅}) ∈ 𝑈)
81, 2wunrn 10658 . . 3 (𝜑 → ran 𝐴𝑈)
91, 7, 8wunxp 10653 . 2 (𝜑 → ((dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈)
10 tposssxp 8186 . . 3 tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴)
1110a1i 11 . 2 (𝜑 → tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴))
121, 9, 11wunss 10641 1 (𝜑 → tpos 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cun 3909  wss 3911  c0 4292  {csn 4585   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  tpos ctpos 8181  WUnicwun 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-tpos 8182  df-wun 10631
This theorem is referenced by:  catcoppccl  18055
  Copyright terms: Public domain W3C validator