MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntpos Structured version   Visualization version   GIF version

Theorem wuntpos 10748
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wuntpos (𝜑 → tpos 𝐴𝑈)

Proof of Theorem wuntpos
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . . 6 (𝜑𝐴𝑈)
31, 2wundm 10742 . . . . 5 (𝜑 → dom 𝐴𝑈)
41, 3wuncnv 10744 . . . 4 (𝜑dom 𝐴𝑈)
51wun0 10732 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
61, 5wunsn 10730 . . . 4 (𝜑 → {∅} ∈ 𝑈)
71, 4, 6wunun 10724 . . 3 (𝜑 → (dom 𝐴 ∪ {∅}) ∈ 𝑈)
81, 2wunrn 10743 . . 3 (𝜑 → ran 𝐴𝑈)
91, 7, 8wunxp 10738 . 2 (𝜑 → ((dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈)
10 tposssxp 8229 . . 3 tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴)
1110a1i 11 . 2 (𝜑 → tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴))
121, 9, 11wunss 10726 1 (𝜑 → tpos 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3924  wss 3926  c0 4308  {csn 4601   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  tpos ctpos 8224  WUnicwun 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-tpos 8225  df-wun 10716
This theorem is referenced by:  catcoppccl  18130
  Copyright terms: Public domain W3C validator