| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wundm 10742 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wuncnv 10744 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
| 5 | 1 | wun0 10732 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| 6 | 1, 5 | wunsn 10730 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
| 7 | 1, 4, 6 | wunun 10724 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
| 8 | 1, 2 | wunrn 10743 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
| 9 | 1, 7, 8 | wunxp 10738 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
| 10 | tposssxp 8229 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
| 12 | 1, 9, 11 | wunss 10726 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 {csn 4601 × cxp 5652 ◡ccnv 5653 dom cdm 5654 ran crn 5655 tpos ctpos 8224 WUnicwun 10714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-tpos 8225 df-wun 10716 |
| This theorem is referenced by: catcoppccl 18130 |
| Copyright terms: Public domain | W3C validator |