| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wundm 10681 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wuncnv 10683 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
| 5 | 1 | wun0 10671 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| 6 | 1, 5 | wunsn 10669 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
| 7 | 1, 4, 6 | wunun 10663 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
| 8 | 1, 2 | wunrn 10682 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
| 9 | 1, 7, 8 | wunxp 10677 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
| 10 | tposssxp 8209 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
| 12 | 1, 9, 11 | wunss 10665 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 ∅c0 4296 {csn 4589 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 tpos ctpos 8204 WUnicwun 10653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-tpos 8205 df-wun 10655 |
| This theorem is referenced by: catcoppccl 18079 |
| Copyright terms: Public domain | W3C validator |