| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wundm 10630 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wuncnv 10632 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
| 5 | 1 | wun0 10620 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| 6 | 1, 5 | wunsn 10618 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
| 7 | 1, 4, 6 | wunun 10612 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
| 8 | 1, 2 | wunrn 10631 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
| 9 | 1, 7, 8 | wunxp 10626 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
| 10 | tposssxp 8169 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
| 12 | 1, 9, 11 | wunss 10614 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 ∅c0 4282 {csn 4577 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 tpos ctpos 8164 WUnicwun 10602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-tpos 8165 df-wun 10604 |
| This theorem is referenced by: catcoppccl 18032 |
| Copyright terms: Public domain | W3C validator |