![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version |
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wundm 10729 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
4 | 1, 3 | wuncnv 10731 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
5 | 1 | wun0 10719 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
6 | 1, 5 | wunsn 10717 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
7 | 1, 4, 6 | wunun 10711 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
8 | 1, 2 | wunrn 10730 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | 1, 7, 8 | wunxp 10725 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
10 | tposssxp 8221 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
12 | 1, 9, 11 | wunss 10713 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 ∅c0 4322 {csn 4628 × cxp 5674 ◡ccnv 5675 dom cdm 5676 ran crn 5677 tpos ctpos 8216 WUnicwun 10701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-tpos 8217 df-wun 10703 |
This theorem is referenced by: catcoppccl 18077 catcoppcclOLD 18078 |
Copyright terms: Public domain | W3C validator |