MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntpos Structured version   Visualization version   GIF version

Theorem wuntpos 10490
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wuntpos (𝜑 → tpos 𝐴𝑈)

Proof of Theorem wuntpos
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . . 6 (𝜑𝐴𝑈)
31, 2wundm 10484 . . . . 5 (𝜑 → dom 𝐴𝑈)
41, 3wuncnv 10486 . . . 4 (𝜑dom 𝐴𝑈)
51wun0 10474 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
61, 5wunsn 10472 . . . 4 (𝜑 → {∅} ∈ 𝑈)
71, 4, 6wunun 10466 . . 3 (𝜑 → (dom 𝐴 ∪ {∅}) ∈ 𝑈)
81, 2wunrn 10485 . . 3 (𝜑 → ran 𝐴𝑈)
91, 7, 8wunxp 10480 . 2 (𝜑 → ((dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈)
10 tposssxp 8046 . . 3 tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴)
1110a1i 11 . 2 (𝜑 → tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴))
121, 9, 11wunss 10468 1 (𝜑 → tpos 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cun 3885  wss 3887  c0 4256  {csn 4561   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  tpos ctpos 8041  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-tpos 8042  df-wun 10458
This theorem is referenced by:  catcoppccl  17832  catcoppcclOLD  17833
  Copyright terms: Public domain W3C validator