![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version |
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wundm 10797 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
4 | 1, 3 | wuncnv 10799 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
5 | 1 | wun0 10787 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
6 | 1, 5 | wunsn 10785 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
7 | 1, 4, 6 | wunun 10779 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
8 | 1, 2 | wunrn 10798 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | 1, 7, 8 | wunxp 10793 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
10 | tposssxp 8271 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
12 | 1, 9, 11 | wunss 10781 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 {csn 4648 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 tpos ctpos 8266 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-tpos 8267 df-wun 10771 |
This theorem is referenced by: catcoppccl 18184 catcoppcclOLD 18185 |
Copyright terms: Public domain | W3C validator |