MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntpos Structured version   Visualization version   GIF version

Theorem wuntpos 10620
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wuntpos (𝜑 → tpos 𝐴𝑈)

Proof of Theorem wuntpos
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . . 6 (𝜑𝐴𝑈)
31, 2wundm 10614 . . . . 5 (𝜑 → dom 𝐴𝑈)
41, 3wuncnv 10616 . . . 4 (𝜑dom 𝐴𝑈)
51wun0 10604 . . . . 5 (𝜑 → ∅ ∈ 𝑈)
61, 5wunsn 10602 . . . 4 (𝜑 → {∅} ∈ 𝑈)
71, 4, 6wunun 10596 . . 3 (𝜑 → (dom 𝐴 ∪ {∅}) ∈ 𝑈)
81, 2wunrn 10615 . . 3 (𝜑 → ran 𝐴𝑈)
91, 7, 8wunxp 10610 . 2 (𝜑 → ((dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈)
10 tposssxp 8155 . . 3 tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴)
1110a1i 11 . 2 (𝜑 → tpos 𝐴 ⊆ ((dom 𝐴 ∪ {∅}) × ran 𝐴))
121, 9, 11wunss 10598 1 (𝜑 → tpos 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cun 3895  wss 3897  c0 4278  {csn 4571   × cxp 5609  ccnv 5610  dom cdm 5611  ran crn 5612  tpos ctpos 8150  WUnicwun 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-tpos 8151  df-wun 10588
This theorem is referenced by:  catcoppccl  18019
  Copyright terms: Public domain W3C validator