![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version |
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wundm 10766 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
4 | 1, 3 | wuncnv 10768 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
5 | 1 | wun0 10756 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
6 | 1, 5 | wunsn 10754 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
7 | 1, 4, 6 | wunun 10748 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
8 | 1, 2 | wunrn 10767 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | 1, 7, 8 | wunxp 10762 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
10 | tposssxp 8254 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
12 | 1, 9, 11 | wunss 10750 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 ∅c0 4339 {csn 4631 × cxp 5687 ◡ccnv 5688 dom cdm 5689 ran crn 5690 tpos ctpos 8249 WUnicwun 10738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-tpos 8250 df-wun 10740 |
This theorem is referenced by: catcoppccl 18171 catcoppcclOLD 18172 |
Copyright terms: Public domain | W3C validator |