| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wundm 10614 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wuncnv 10616 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
| 5 | 1 | wun0 10604 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| 6 | 1, 5 | wunsn 10602 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
| 7 | 1, 4, 6 | wunun 10596 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
| 8 | 1, 2 | wunrn 10615 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
| 9 | 1, 7, 8 | wunxp 10610 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
| 10 | tposssxp 8155 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
| 12 | 1, 9, 11 | wunss 10598 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 ∅c0 4278 {csn 4571 × cxp 5609 ◡ccnv 5610 dom cdm 5611 ran crn 5612 tpos ctpos 8150 WUnicwun 10586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-tpos 8151 df-wun 10588 |
| This theorem is referenced by: catcoppccl 18019 |
| Copyright terms: Public domain | W3C validator |