Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wuntpos | Structured version Visualization version GIF version |
Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntpos | ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wundm 10484 | . . . . 5 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
4 | 1, 3 | wuncnv 10486 | . . . 4 ⊢ (𝜑 → ◡dom 𝐴 ∈ 𝑈) |
5 | 1 | wun0 10474 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝑈) |
6 | 1, 5 | wunsn 10472 | . . . 4 ⊢ (𝜑 → {∅} ∈ 𝑈) |
7 | 1, 4, 6 | wunun 10466 | . . 3 ⊢ (𝜑 → (◡dom 𝐴 ∪ {∅}) ∈ 𝑈) |
8 | 1, 2 | wunrn 10485 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
9 | 1, 7, 8 | wunxp 10480 | . 2 ⊢ (𝜑 → ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) ∈ 𝑈) |
10 | tposssxp 8046 | . . 3 ⊢ tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴) | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → tpos 𝐴 ⊆ ((◡dom 𝐴 ∪ {∅}) × ran 𝐴)) |
12 | 1, 9, 11 | wunss 10468 | 1 ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 {csn 4561 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 tpos ctpos 8041 WUnicwun 10456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-tpos 8042 df-wun 10458 |
This theorem is referenced by: catcoppccl 17832 catcoppcclOLD 17833 |
Copyright terms: Public domain | W3C validator |