| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of xp0 5714 as of 1-Feb-2026. (Contributed by NM, 12-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| xp0OLD | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5713 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 5813 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 6104 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 6086 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2762 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4280 × cxp 5612 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |