Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version |
Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 5718 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ◡ccnv 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-br 5036 df-opab 5098 df-cnv 5535 |
This theorem is referenced by: mptcnv 5974 cnvin 5979 cnvxp 5990 xp0 5991 imainrect 6014 cnvcnv 6025 cnvrescnv 6028 mptpreima 6071 co01 6095 coi2 6097 funcnvpr 6401 funcnvtp 6402 fcoi1 6541 f1oprswap 6649 f1ocnvd 7397 f1iun 7654 cnvoprab 7767 fparlem3 7819 fparlem4 7820 tz7.48-2 8093 mapsncnv 8480 sbthlem8 8661 1sdom 8764 cnvepnep 9109 infxpenc2 9487 compsscnv 9836 zorn2lem4 9964 funcnvs1 14326 fsumcom2 15182 fprodcom2 15391 fthoppc 17257 oduval 17811 oduleval 17812 pjdm 20477 qtopres 22403 xkocnv 22519 ustneism 22929 mbfres 24349 dflog2 25256 dfrelog 25261 dvlog 25346 efopnlem2 25352 axcontlem2 26863 2trld 27828 0pth 28014 1pthdlem1 28024 1trld 28031 3trld 28061 ex-cnv 28326 cnvadj 29779 cnvprop 30557 gtiso 30561 padct 30582 cnvoprabOLD 30583 f1od2 30584 ordtcnvNEW 31395 ordtrest2NEW 31398 mbfmcst 31749 0rrv 31941 ballotlemrinv 32023 mthmpps 33064 pprodcnveq 33760 brcnvrabga 36065 dfxrn2 36094 xrninxp 36106 prjspeclsp 39976 cytpval 40554 resnonrel 40693 cononrel1 40695 cononrel2 40696 cnvtrrel 40772 clsneicnv 41209 neicvgnvo 41219 |
Copyright terms: Public domain | W3C validator |