![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version |
Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 5886 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ◡ccnv 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ss 3979 df-br 5148 df-opab 5210 df-cnv 5696 |
This theorem is referenced by: mptcnv 6161 cnvin 6166 cnvxp 6178 xp0 6179 imainrect 6202 cnvcnv 6213 cnvrescnv 6216 mptpreima 6259 co01 6282 coi2 6284 funcnvpr 6629 funcnvtp 6630 fcoi1 6782 f1oprswap 6892 f1ocnvd 7683 f1iun 7966 mptcnfimad 8009 cnvoprab 8083 fparlem3 8137 fparlem4 8138 tz7.48-2 8480 mapsncnv 8931 sbthlem8 9128 1sdomOLD 9282 cnvepnep 9645 infxpenc2 10059 compsscnv 10408 zorn2lem4 10536 funcnvs1 14947 fsumcom2 15806 fprodcom2 16016 fthoppc 17976 oduval 18344 oduleval 18345 pjdm 21744 qtopres 23721 xkocnv 23837 ustneism 24247 mbfres 25692 dflog2 26616 dfrelog 26621 dvlog 26707 efopnlem2 26713 axcontlem2 28994 2trld 29967 0pth 30153 1pthdlem1 30163 1trld 30170 3trld 30200 ex-cnv 30465 cnvadj 31920 cnvprop 32710 gtiso 32715 padct 32736 cnvoprabOLD 32737 f1od2 32738 ordtcnvNEW 33880 ordtrest2NEW 33883 mbfmcst 34240 0rrv 34432 ballotlemrinv 34514 mthmpps 35566 pprodcnveq 35864 br1cnvres 38250 brcnvrabga 38323 dfxrn2 38357 xrninxp 38373 prjspeclsp 42598 cytpval 43190 resnonrel 43581 cononrel1 43583 cononrel2 43584 cnvtrrel 43659 clsneicnv 44094 neicvgnvo 44104 |
Copyright terms: Public domain | W3C validator |