| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5840 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-cnv 5649 |
| This theorem is referenced by: mptcnv 6115 cnvin 6120 cnvxp 6133 xp0 6134 imainrect 6157 cnvcnv 6168 cnvrescnv 6171 mptpreima 6214 co01 6237 coi2 6239 funcnvpr 6581 funcnvtp 6582 fcoi1 6737 f1oprswap 6847 f1ocnvd 7643 resf1extb 7913 f1iun 7925 mptcnfimad 7968 cnvoprab 8042 fparlem3 8096 fparlem4 8097 tz7.48-2 8413 mapsncnv 8869 sbthlem8 9064 1sdomOLD 9203 cnvepnep 9568 infxpenc2 9982 compsscnv 10331 zorn2lem4 10459 funcnvs1 14885 fsumcom2 15747 fprodcom2 15957 fthoppc 17894 oduval 18256 oduleval 18257 pjdm 21623 qtopres 23592 xkocnv 23708 ustneism 24118 mbfres 25552 dflog2 26476 dfrelog 26481 dvlog 26567 efopnlem2 26573 axcontlem2 28899 2trld 29875 0pth 30061 1pthdlem1 30071 1trld 30078 3trld 30108 ex-cnv 30373 cnvadj 31828 cnvprop 32626 gtiso 32631 padct 32650 f1od2 32651 elrgspnsubrunlem2 33206 ordtcnvNEW 33917 ordtrest2NEW 33920 mbfmcst 34257 0rrv 34449 ballotlemrinv 34532 mthmpps 35576 pprodcnveq 35878 br1cnvres 38265 brcnvrabga 38331 dfxrn2 38365 xrninxp 38385 prjspeclsp 42607 cytpval 43198 resnonrel 43588 cononrel1 43590 cononrel2 43591 cnvtrrel 43666 clsneicnv 44101 neicvgnvo 44111 upgrimpthslem1 47911 tposrescnv 48871 |
| Copyright terms: Public domain | W3C validator |