| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5816 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-cnv 5627 |
| This theorem is referenced by: mptcnv 6088 cnvin 6093 cnvxp 6106 xp0 6107 imainrect 6130 cnvcnv 6141 cnvrescnv 6144 mptpreima 6187 co01 6210 coi2 6212 funcnvpr 6544 funcnvtp 6545 fcoi1 6698 f1oprswap 6808 f1ocnvd 7600 resf1extb 7867 f1iun 7879 mptcnfimad 7921 cnvoprab 7995 fparlem3 8047 fparlem4 8048 tz7.48-2 8364 mapsncnv 8820 sbthlem8 9011 cnvepnep 9504 infxpenc2 9916 compsscnv 10265 zorn2lem4 10393 funcnvs1 14819 fsumcom2 15681 fprodcom2 15891 fthoppc 17832 oduval 18194 oduleval 18195 pjdm 21614 qtopres 23583 xkocnv 23699 ustneism 24109 mbfres 25543 dflog2 26467 dfrelog 26472 dvlog 26558 efopnlem2 26564 axcontlem2 28914 2trld 29887 0pth 30073 1pthdlem1 30083 1trld 30090 3trld 30120 ex-cnv 30385 cnvadj 31840 cnvprop 32646 gtiso 32651 padct 32670 f1od2 32671 elrgspnsubrunlem2 33197 ordtcnvNEW 33903 ordtrest2NEW 33906 mbfmcst 34243 0rrv 34435 ballotlemrinv 34518 mthmpps 35575 pprodcnveq 35877 br1cnvres 38264 brcnvrabga 38330 dfxrn2 38364 xrninxp 38384 prjspeclsp 42605 cytpval 43195 resnonrel 43585 cononrel1 43587 cononrel2 43588 cnvtrrel 43663 clsneicnv 44098 neicvgnvo 44108 upgrimpthslem1 47911 tposrescnv 48883 |
| Copyright terms: Public domain | W3C validator |