| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5837 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-cnv 5646 |
| This theorem is referenced by: mptcnv 6112 cnvin 6117 cnvxp 6130 xp0 6131 imainrect 6154 cnvcnv 6165 cnvrescnv 6168 mptpreima 6211 co01 6234 coi2 6236 funcnvpr 6578 funcnvtp 6579 fcoi1 6734 f1oprswap 6844 f1ocnvd 7640 resf1extb 7910 f1iun 7922 mptcnfimad 7965 cnvoprab 8039 fparlem3 8093 fparlem4 8094 tz7.48-2 8410 mapsncnv 8866 sbthlem8 9058 1sdomOLD 9196 cnvepnep 9561 infxpenc2 9975 compsscnv 10324 zorn2lem4 10452 funcnvs1 14878 fsumcom2 15740 fprodcom2 15950 fthoppc 17887 oduval 18249 oduleval 18250 pjdm 21616 qtopres 23585 xkocnv 23701 ustneism 24111 mbfres 25545 dflog2 26469 dfrelog 26474 dvlog 26560 efopnlem2 26566 axcontlem2 28892 2trld 29868 0pth 30054 1pthdlem1 30064 1trld 30071 3trld 30101 ex-cnv 30366 cnvadj 31821 cnvprop 32619 gtiso 32624 padct 32643 f1od2 32644 elrgspnsubrunlem2 33199 ordtcnvNEW 33910 ordtrest2NEW 33913 mbfmcst 34250 0rrv 34442 ballotlemrinv 34525 mthmpps 35569 pprodcnveq 35871 br1cnvres 38258 brcnvrabga 38324 dfxrn2 38358 xrninxp 38378 prjspeclsp 42600 cytpval 43191 resnonrel 43581 cononrel1 43583 cononrel2 43584 cnvtrrel 43659 clsneicnv 44094 neicvgnvo 44104 upgrimpthslem1 47907 tposrescnv 48867 |
| Copyright terms: Public domain | W3C validator |