Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version |
Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 5771 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: mptcnv 6032 cnvin 6037 cnvxp 6049 xp0 6050 imainrect 6073 cnvcnv 6084 cnvrescnv 6087 mptpreima 6130 co01 6154 coi2 6156 funcnvpr 6480 funcnvtp 6481 fcoi1 6632 f1oprswap 6743 f1ocnvd 7498 f1iun 7760 cnvoprab 7873 fparlem3 7925 fparlem4 7926 tz7.48-2 8243 mapsncnv 8639 sbthlem8 8830 1sdom 8955 cnvepnep 9296 infxpenc2 9709 compsscnv 10058 zorn2lem4 10186 funcnvs1 14553 fsumcom2 15414 fprodcom2 15622 fthoppc 17555 oduval 17922 oduleval 17923 pjdm 20824 qtopres 22757 xkocnv 22873 ustneism 23283 mbfres 24713 dflog2 25621 dfrelog 25626 dvlog 25711 efopnlem2 25717 axcontlem2 27236 2trld 28204 0pth 28390 1pthdlem1 28400 1trld 28407 3trld 28437 ex-cnv 28702 cnvadj 30155 cnvprop 30931 gtiso 30935 padct 30956 cnvoprabOLD 30957 f1od2 30958 ordtcnvNEW 31772 ordtrest2NEW 31775 mbfmcst 32126 0rrv 32318 ballotlemrinv 32400 mthmpps 33444 pprodcnveq 34112 brcnvrabga 36404 dfxrn2 36433 xrninxp 36445 prjspeclsp 40372 cytpval 40950 resnonrel 41089 cononrel1 41091 cononrel2 41092 cnvtrrel 41167 clsneicnv 41604 neicvgnvo 41614 |
Copyright terms: Public domain | W3C validator |