| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5853 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-cnv 5662 |
| This theorem is referenced by: mptcnv 6128 cnvin 6133 cnvxp 6146 xp0 6147 imainrect 6170 cnvcnv 6181 cnvrescnv 6184 mptpreima 6227 co01 6250 coi2 6252 funcnvpr 6597 funcnvtp 6598 fcoi1 6751 f1oprswap 6861 f1ocnvd 7656 resf1extb 7928 f1iun 7940 mptcnfimad 7983 cnvoprab 8057 fparlem3 8111 fparlem4 8112 tz7.48-2 8454 mapsncnv 8905 sbthlem8 9102 1sdomOLD 9255 cnvepnep 9620 infxpenc2 10034 compsscnv 10383 zorn2lem4 10511 funcnvs1 14929 fsumcom2 15788 fprodcom2 15998 fthoppc 17936 oduval 18298 oduleval 18299 pjdm 21665 qtopres 23634 xkocnv 23750 ustneism 24160 mbfres 25595 dflog2 26519 dfrelog 26524 dvlog 26610 efopnlem2 26616 axcontlem2 28890 2trld 29866 0pth 30052 1pthdlem1 30062 1trld 30069 3trld 30099 ex-cnv 30364 cnvadj 31819 cnvprop 32619 gtiso 32624 padct 32643 f1od2 32644 elrgspnsubrunlem2 33189 ordtcnvNEW 33897 ordtrest2NEW 33900 mbfmcst 34237 0rrv 34429 ballotlemrinv 34512 mthmpps 35550 pprodcnveq 35847 br1cnvres 38233 brcnvrabga 38306 dfxrn2 38340 xrninxp 38356 prjspeclsp 42582 cytpval 43173 resnonrel 43563 cononrel1 43565 cononrel2 43566 cnvtrrel 43641 clsneicnv 44076 neicvgnvo 44086 upgrimpthslem1 47868 tposrescnv 48802 |
| Copyright terms: Public domain | W3C validator |