| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5827 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: mptcnv 6100 cnvin 6105 cnvxp 6118 xp0 6119 imainrect 6142 cnvcnv 6153 cnvrescnv 6156 mptpreima 6199 co01 6222 coi2 6224 funcnvpr 6562 funcnvtp 6563 fcoi1 6716 f1oprswap 6826 f1ocnvd 7620 resf1extb 7890 f1iun 7902 mptcnfimad 7944 cnvoprab 8018 fparlem3 8070 fparlem4 8071 tz7.48-2 8387 mapsncnv 8843 sbthlem8 9035 1sdomOLD 9172 cnvepnep 9537 infxpenc2 9951 compsscnv 10300 zorn2lem4 10428 funcnvs1 14854 fsumcom2 15716 fprodcom2 15926 fthoppc 17867 oduval 18229 oduleval 18230 pjdm 21649 qtopres 23618 xkocnv 23734 ustneism 24144 mbfres 25578 dflog2 26502 dfrelog 26507 dvlog 26593 efopnlem2 26599 axcontlem2 28945 2trld 29918 0pth 30104 1pthdlem1 30114 1trld 30121 3trld 30151 ex-cnv 30416 cnvadj 31871 cnvprop 32669 gtiso 32674 padct 32693 f1od2 32694 elrgspnsubrunlem2 33215 ordtcnvNEW 33903 ordtrest2NEW 33906 mbfmcst 34243 0rrv 34435 ballotlemrinv 34518 mthmpps 35562 pprodcnveq 35864 br1cnvres 38251 brcnvrabga 38317 dfxrn2 38351 xrninxp 38371 prjspeclsp 42593 cytpval 43184 resnonrel 43574 cononrel1 43576 cononrel2 43577 cnvtrrel 43652 clsneicnv 44087 neicvgnvo 44097 upgrimpthslem1 47900 tposrescnv 48860 |
| Copyright terms: Public domain | W3C validator |