![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version |
Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 5898 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: mptcnv 6171 cnvin 6176 cnvxp 6188 xp0 6189 imainrect 6212 cnvcnv 6223 cnvrescnv 6226 mptpreima 6269 co01 6292 coi2 6294 funcnvpr 6640 funcnvtp 6641 fcoi1 6795 f1oprswap 6906 f1ocnvd 7701 f1iun 7984 mptcnfimad 8027 cnvoprab 8101 fparlem3 8155 fparlem4 8156 tz7.48-2 8498 mapsncnv 8951 sbthlem8 9156 1sdomOLD 9312 cnvepnep 9677 infxpenc2 10091 compsscnv 10440 zorn2lem4 10568 funcnvs1 14961 fsumcom2 15822 fprodcom2 16032 fthoppc 17990 oduval 18358 oduleval 18359 pjdm 21750 qtopres 23727 xkocnv 23843 ustneism 24253 mbfres 25698 dflog2 26620 dfrelog 26625 dvlog 26711 efopnlem2 26717 axcontlem2 28998 2trld 29971 0pth 30157 1pthdlem1 30167 1trld 30174 3trld 30204 ex-cnv 30469 cnvadj 31924 cnvprop 32708 gtiso 32712 padct 32733 cnvoprabOLD 32734 f1od2 32735 ordtcnvNEW 33866 ordtrest2NEW 33869 mbfmcst 34224 0rrv 34416 ballotlemrinv 34498 mthmpps 35550 pprodcnveq 35847 br1cnvres 38225 brcnvrabga 38298 dfxrn2 38332 xrninxp 38348 prjspeclsp 42567 cytpval 43163 resnonrel 43554 cononrel1 43556 cononrel2 43557 cnvtrrel 43632 clsneicnv 44067 neicvgnvo 44077 |
Copyright terms: Public domain | W3C validator |