| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5812 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: mptcnv 6085 cnvin 6091 cnvxp 6104 xp0OLD 6105 imainrect 6128 cnvcnv 6139 cnvrescnv 6142 mptpreima 6185 co01 6209 coi2 6211 funcnvpr 6543 funcnvtp 6544 fcoi1 6697 f1oprswap 6807 f1ocnvd 7597 resf1extb 7864 f1iun 7876 mptcnfimad 7918 cnvoprab 7992 fparlem3 8044 fparlem4 8045 tz7.48-2 8361 mapsncnv 8817 sbthlem8 9007 cnvepnep 9498 infxpenc2 9913 compsscnv 10262 zorn2lem4 10390 funcnvs1 14819 fsumcom2 15681 fprodcom2 15891 fthoppc 17832 oduval 18194 oduleval 18195 pjdm 21644 qtopres 23613 xkocnv 23729 ustneism 24139 mbfres 25572 dflog2 26496 dfrelog 26501 dvlog 26587 efopnlem2 26593 axcontlem2 28943 2trld 29916 0pth 30105 1pthdlem1 30115 1trld 30122 3trld 30152 ex-cnv 30417 cnvadj 31872 cnvprop 32677 gtiso 32682 padct 32701 f1od2 32702 elrgspnsubrunlem2 33215 ordtcnvNEW 33933 ordtrest2NEW 33936 mbfmcst 34272 0rrv 34464 ballotlemrinv 34547 mthmpps 35626 pprodcnveq 35925 br1cnvres 38305 brcnvrabga 38373 dfxrn2 38408 xrninxp 38438 dfpre4 38492 prjspeclsp 42704 cytpval 43294 resnonrel 43684 cononrel1 43686 cononrel2 43687 cnvtrrel 43762 clsneicnv 44197 neicvgnvo 44207 upgrimpthslem1 48006 tposrescnv 48978 |
| Copyright terms: Public domain | W3C validator |