| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5828 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: mptcnv 6101 cnvin 6106 cnvxp 6119 xp0 6120 imainrect 6143 cnvcnv 6154 cnvrescnv 6157 mptpreima 6200 co01 6223 coi2 6225 funcnvpr 6563 funcnvtp 6564 fcoi1 6717 f1oprswap 6827 f1ocnvd 7621 resf1extb 7891 f1iun 7903 mptcnfimad 7945 cnvoprab 8019 fparlem3 8071 fparlem4 8072 tz7.48-2 8388 mapsncnv 8844 sbthlem8 9036 1sdomOLD 9173 cnvepnep 9540 infxpenc2 9954 compsscnv 10303 zorn2lem4 10431 funcnvs1 14856 fsumcom2 15718 fprodcom2 15928 fthoppc 17869 oduval 18231 oduleval 18232 pjdm 21651 qtopres 23620 xkocnv 23736 ustneism 24146 mbfres 25580 dflog2 26504 dfrelog 26509 dvlog 26595 efopnlem2 26601 axcontlem2 28947 2trld 29920 0pth 30106 1pthdlem1 30116 1trld 30123 3trld 30153 ex-cnv 30418 cnvadj 31873 cnvprop 32671 gtiso 32676 padct 32695 f1od2 32696 elrgspnsubrunlem2 33217 ordtcnvNEW 33905 ordtrest2NEW 33908 mbfmcst 34245 0rrv 34437 ballotlemrinv 34520 mthmpps 35564 pprodcnveq 35866 br1cnvres 38253 brcnvrabga 38319 dfxrn2 38353 xrninxp 38373 prjspeclsp 42595 cytpval 43186 resnonrel 43576 cononrel1 43578 cononrel2 43579 cnvtrrel 43654 clsneicnv 44089 neicvgnvo 44099 upgrimpthslem1 47902 tposrescnv 48862 |
| Copyright terms: Public domain | W3C validator |