| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| Ref | Expression |
|---|---|
| cnveqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | cnveq 5827 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: mptcnv 6100 cnvin 6105 cnvxp 6118 xp0 6119 imainrect 6142 cnvcnv 6153 cnvrescnv 6156 mptpreima 6199 co01 6222 coi2 6224 funcnvpr 6562 funcnvtp 6563 fcoi1 6716 f1oprswap 6826 f1ocnvd 7620 resf1extb 7890 f1iun 7902 mptcnfimad 7944 cnvoprab 8018 fparlem3 8070 fparlem4 8071 tz7.48-2 8387 mapsncnv 8843 sbthlem8 9035 1sdomOLD 9172 cnvepnep 9539 infxpenc2 9953 compsscnv 10302 zorn2lem4 10430 funcnvs1 14855 fsumcom2 15717 fprodcom2 15927 fthoppc 17868 oduval 18230 oduleval 18231 pjdm 21650 qtopres 23619 xkocnv 23735 ustneism 24145 mbfres 25579 dflog2 26503 dfrelog 26508 dvlog 26594 efopnlem2 26600 axcontlem2 28946 2trld 29919 0pth 30105 1pthdlem1 30115 1trld 30122 3trld 30152 ex-cnv 30417 cnvadj 31872 cnvprop 32670 gtiso 32675 padct 32694 f1od2 32695 elrgspnsubrunlem2 33216 ordtcnvNEW 33904 ordtrest2NEW 33907 mbfmcst 34244 0rrv 34436 ballotlemrinv 34519 mthmpps 35563 pprodcnveq 35865 br1cnvres 38252 brcnvrabga 38318 dfxrn2 38352 xrninxp 38372 prjspeclsp 42594 cytpval 43185 resnonrel 43575 cononrel1 43577 cononrel2 43578 cnvtrrel 43653 clsneicnv 44088 neicvgnvo 44098 upgrimpthslem1 47901 tposrescnv 48861 |
| Copyright terms: Public domain | W3C validator |