Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnveqi | Structured version Visualization version GIF version |
Description: Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 5785 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ◡ccnv 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-br 5076 df-opab 5138 df-cnv 5598 |
This theorem is referenced by: mptcnv 6048 cnvin 6053 cnvxp 6065 xp0 6066 imainrect 6089 cnvcnv 6100 cnvrescnv 6103 mptpreima 6146 co01 6169 coi2 6171 funcnvpr 6503 funcnvtp 6504 fcoi1 6657 f1oprswap 6769 f1ocnvd 7529 f1iun 7795 cnvoprab 7909 fparlem3 7963 fparlem4 7964 tz7.48-2 8282 mapsncnv 8690 sbthlem8 8886 1sdom 9034 cnvepnep 9375 infxpenc2 9787 compsscnv 10136 zorn2lem4 10264 funcnvs1 14634 fsumcom2 15495 fprodcom2 15703 fthoppc 17648 oduval 18015 oduleval 18016 pjdm 20923 qtopres 22858 xkocnv 22974 ustneism 23384 mbfres 24817 dflog2 25725 dfrelog 25730 dvlog 25815 efopnlem2 25821 axcontlem2 27342 2trld 28312 0pth 28498 1pthdlem1 28508 1trld 28515 3trld 28545 ex-cnv 28810 cnvadj 30263 cnvprop 31038 gtiso 31042 padct 31063 cnvoprabOLD 31064 f1od2 31065 ordtcnvNEW 31879 ordtrest2NEW 31882 mbfmcst 32235 0rrv 32427 ballotlemrinv 32509 mthmpps 33553 pprodcnveq 34194 brcnvrabga 36484 dfxrn2 36513 xrninxp 36525 prjspeclsp 40458 cytpval 41041 resnonrel 41207 cononrel1 41209 cononrel2 41210 cnvtrrel 41285 clsneicnv 41722 neicvgnvo 41732 |
Copyright terms: Public domain | W3C validator |