![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpnz | Structured version Visualization version GIF version |
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.) |
Ref | Expression |
---|---|
xpnz | ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4338 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | n0 4338 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
3 | 1, 2 | anbi12i 626 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
4 | exdistrv 1951 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
6 | opex 5454 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
7 | eleq1 2813 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝐴 × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
8 | opelxp 5702 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
9 | 7, 8 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
10 | 6, 9 | spcev 3588 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
11 | n0 4338 | . . . . 5 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | |
12 | 10, 11 | sylibr 233 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐴 × 𝐵) ≠ ∅) |
13 | 12 | exlimivv 1927 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐴 × 𝐵) ≠ ∅) |
14 | 5, 13 | sylbi 216 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅) |
15 | xpeq1 5680 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
16 | 0xp 5764 | . . . . 5 ⊢ (∅ × 𝐵) = ∅ | |
17 | 15, 16 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
18 | 17 | necon3i 2965 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
19 | xpeq2 5687 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
20 | xp0 6147 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
21 | 19, 20 | eqtrdi 2780 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
22 | 21 | necon3i 2965 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅) |
23 | 18, 22 | jca 511 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
24 | 14, 23 | impbii 208 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∅c0 4314 〈cop 4626 × cxp 5664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 |
This theorem is referenced by: xpeq0 6149 ssxpb 6163 xp11 6164 unixpid 6273 xpexr2 7903 frxp 8106 xpfir 9262 axcc2lem 10427 axdc4lem 10446 pzriprnglem4 21339 mamufacex 22213 txindis 23460 2ndimaxp 32341 bj-xpnzex 36330 bj-1upln0 36380 bj-2upln1upl 36395 dibn0 40514 |
Copyright terms: Public domain | W3C validator |