MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnz Structured version   Visualization version   GIF version

Theorem xpnz 6159
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
xpnz ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)

Proof of Theorem xpnz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4333 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 n0 4333 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2anbi12i 628 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
4 exdistrv 1954 . . . 4 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
53, 4bitr4i 278 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
6 opex 5449 . . . . . 6 𝑥, 𝑦⟩ ∈ V
7 eleq1 2821 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
8 opelxp 5701 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
97, 8bitrdi 287 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
106, 9spcev 3589 . . . . 5 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 n0 4333 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
1210, 11sylibr 234 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1931 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 217 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
15 xpeq1 5679 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
16 0xp 5764 . . . . 5 (∅ × 𝐵) = ∅
1715, 16eqtrdi 2785 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1817necon3i 2963 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
19 xpeq2 5686 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
20 xp0 6158 . . . . 5 (𝐴 × ∅) = ∅
2119, 20eqtrdi 2785 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
2221necon3i 2963 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
2318, 22jca 511 . 2 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
2414, 23impbii 209 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  c0 4313  cop 4612   × cxp 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673
This theorem is referenced by:  xpeq0  6160  ssxpb  6174  xp11  6175  unixpid  6284  xpexr2  7923  frxp  8133  xpfir  9282  axcc2lem  10458  axdc4lem  10477  pzriprnglem4  21458  mamufacex  22349  txindis  23589  2ndimaxp  32592  bj-xpnzex  36935  bj-1upln0  36985  bj-2upln1upl  37000  dibn0  41130  aks6d1c2lem4  42103  aks6d1c2  42106  aks6d1c6lem3  42148
  Copyright terms: Public domain W3C validator