MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpnz Structured version   Visualization version   GIF version

Theorem xpnz 6051
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
xpnz ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)

Proof of Theorem xpnz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 n0 4277 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2anbi12i 626 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
4 exdistrv 1960 . . . 4 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
53, 4bitr4i 277 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
6 opex 5373 . . . . . 6 𝑥, 𝑦⟩ ∈ V
7 eleq1 2826 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
8 opelxp 5616 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
97, 8bitrdi 286 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
106, 9spcev 3535 . . . . 5 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 n0 4277 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
1210, 11sylibr 233 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
1312exlimivv 1936 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → (𝐴 × 𝐵) ≠ ∅)
145, 13sylbi 216 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
15 xpeq1 5594 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
16 0xp 5675 . . . . 5 (∅ × 𝐵) = ∅
1715, 16eqtrdi 2795 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
1817necon3i 2975 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅)
19 xpeq2 5601 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
20 xp0 6050 . . . . 5 (𝐴 × ∅) = ∅
2119, 20eqtrdi 2795 . . . 4 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
2221necon3i 2975 . . 3 ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅)
2318, 22jca 511 . 2 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
2414, 23impbii 208 1 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  c0 4253  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  xpeq0  6052  ssxpb  6066  xp11  6067  unixpid  6176  xpexr2  7740  frxp  7938  xpfir  8970  axcc2lem  10123  axdc4lem  10142  mamufacex  21448  txindis  22693  2ndimaxp  30885  bj-xpnzex  35076  bj-1upln0  35126  bj-2upln1upl  35141  dibn0  39094
  Copyright terms: Public domain W3C validator