| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpnz | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.) |
| Ref | Expression |
|---|---|
| xpnz | ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4333 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | n0 4333 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
| 3 | 1, 2 | anbi12i 628 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
| 4 | exdistrv 1955 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
| 5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 6 | opex 5444 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 7 | eleq1 2823 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝐴 × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
| 8 | opelxp 5695 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 9 | 7, 8 | bitrdi 287 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 10 | 6, 9 | spcev 3590 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) |
| 11 | n0 4333 | . . . . 5 ⊢ ((𝐴 × 𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵)) | |
| 12 | 10, 11 | sylibr 234 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐴 × 𝐵) ≠ ∅) |
| 13 | 12 | exlimivv 1932 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐴 × 𝐵) ≠ ∅) |
| 14 | 5, 13 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅) |
| 15 | xpeq1 5673 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
| 16 | 0xp 5758 | . . . . 5 ⊢ (∅ × 𝐵) = ∅ | |
| 17 | 15, 16 | eqtrdi 2787 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
| 18 | 17 | necon3i 2965 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
| 19 | xpeq2 5680 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 20 | xp0 6152 | . . . . 5 ⊢ (𝐴 × ∅) = ∅ | |
| 21 | 19, 20 | eqtrdi 2787 | . . . 4 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 22 | 21 | necon3i 2965 | . . 3 ⊢ ((𝐴 × 𝐵) ≠ ∅ → 𝐵 ≠ ∅) |
| 23 | 18, 22 | jca 511 | . 2 ⊢ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
| 24 | 14, 23 | impbii 209 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 〈cop 4612 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 |
| This theorem is referenced by: xpeq0 6154 ssxpb 6168 xp11 6169 unixpid 6278 xpexr2 7920 frxp 8130 xpfir 9277 axcc2lem 10455 axdc4lem 10474 pzriprnglem4 21450 mamufacex 22339 txindis 23577 2ndimaxp 32629 bj-xpnzex 36982 bj-1upln0 37032 bj-2upln1upl 37047 dibn0 41177 aks6d1c2lem4 42145 aks6d1c2 42148 aks6d1c6lem3 42190 imasubc 49058 |
| Copyright terms: Public domain | W3C validator |