MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvxp Structured version   Visualization version   GIF version

Theorem cnvxp 6106
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp (𝐴 × 𝐵) = (𝐵 × 𝐴)

Proof of Theorem cnvxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 6086 . . 3 {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝐵)}
2 ancom 460 . . . 4 ((𝑦𝐴𝑥𝐵) ↔ (𝑥𝐵𝑦𝐴))
32opabbii 5159 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
41, 3eqtri 2752 . 2 {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
5 df-xp 5625 . . 3 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
65cnveqi 5817 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
7 df-xp 5625 . 2 (𝐵 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
84, 6, 73eqtr4i 2762 1 (𝐴 × 𝐵) = (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {copab 5154   × cxp 5617  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627
This theorem is referenced by:  xp0  6107  rnxp  6119  rnxpss  6121  dminxp  6129  imainrect  6130  cnvrescnv  6144  fparlem3  8047  fparlem4  8048  tposfo  8186  tposf  8187  xpider  8715  xpcomf1o  8983  fpwwe2lem12  10536  trclublem  14902  pjdm  21614  tposmap  22342  ordtrest2  23089  ustneism  24109  trust  24115  metustsym  24441  metust  24444  gtiso  32651  padct  32670  gsumhashmul  33023  ordtcnvNEW  33903  ordtrest2NEW  33906  mbfmcst  34243  eulerpartlemt  34355  0rrv  34435  msrf  35535  mthmpps  35575  elrn3  35755  trclubgNEW  43611  xpexb  44447  tposresxp  48887  tposf1o  48888
  Copyright terms: Public domain W3C validator