Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvxp | Structured version Visualization version GIF version |
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 5981 | . . 3 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | ancom 464 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
3 | 2 | opabbii 5107 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
4 | 1, 3 | eqtri 2762 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
5 | df-xp 5541 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
6 | 5 | cnveqi 5727 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
7 | df-xp 5541 | . 2 ⊢ (𝐵 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
8 | 4, 6, 7 | 3eqtr4i 2772 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 {copab 5102 × cxp 5533 ◡ccnv 5534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5041 df-opab 5103 df-xp 5541 df-rel 5542 df-cnv 5543 |
This theorem is referenced by: xp0 6000 rnxp 6012 rnxpss 6014 dminxp 6022 imainrect 6023 cnvrescnv 6037 fparlem3 7848 fparlem4 7849 tposfo 7961 tposf 7962 xpider 8412 xpcomf1o 8668 fpwwe2lem12 10155 trclublem 14457 pjdm 20536 tposmap 21221 ordtrest2 21968 ustneism 22988 trust 22994 metustsym 23321 metust 23324 gtiso 30621 padct 30642 gsumhashmul 30906 ordtcnvNEW 31455 ordtrest2NEW 31458 mbfmcst 31809 eulerpartlemt 31921 0rrv 32001 msrf 33088 mthmpps 33128 elrn3 33316 trclubgNEW 40812 xpexb 41651 |
Copyright terms: Public domain | W3C validator |