| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvxp | Structured version Visualization version GIF version | ||
| Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvopab 6098 | . . 3 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | ancom 460 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
| 3 | 2 | opabbii 5169 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
| 4 | 1, 3 | eqtri 2752 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
| 5 | df-xp 5637 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 6 | 5 | cnveqi 5828 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 7 | df-xp 5637 | . 2 ⊢ (𝐵 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
| 8 | 4, 6, 7 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5164 × cxp 5629 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: xp0 6119 rnxp 6131 rnxpss 6133 dminxp 6141 imainrect 6142 cnvrescnv 6156 fparlem3 8070 fparlem4 8071 tposfo 8209 tposf 8210 xpider 8738 xpcomf1o 9007 fpwwe2lem12 10571 trclublem 14937 pjdm 21649 tposmap 22377 ordtrest2 23124 ustneism 24144 trust 24150 metustsym 24476 metust 24479 gtiso 32674 padct 32693 gsumhashmul 33044 ordtcnvNEW 33903 ordtrest2NEW 33906 mbfmcst 34243 eulerpartlemt 34355 0rrv 34435 msrf 35522 mthmpps 35562 elrn3 35742 trclubgNEW 43600 xpexb 44436 tposresxp 48864 tposf1o 48865 |
| Copyright terms: Public domain | W3C validator |