MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvxp Structured version   Visualization version   GIF version

Theorem cnvxp 6118
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp (𝐴 × 𝐵) = (𝐵 × 𝐴)

Proof of Theorem cnvxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 6098 . . 3 {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝐵)}
2 ancom 460 . . . 4 ((𝑦𝐴𝑥𝐵) ↔ (𝑥𝐵𝑦𝐴))
32opabbii 5169 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
41, 3eqtri 2752 . 2 {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
5 df-xp 5637 . . 3 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
65cnveqi 5828 . 2 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
7 df-xp 5637 . 2 (𝐵 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐴)}
84, 6, 73eqtr4i 2762 1 (𝐴 × 𝐵) = (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {copab 5164   × cxp 5629  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639
This theorem is referenced by:  xp0  6119  rnxp  6131  rnxpss  6133  dminxp  6141  imainrect  6142  cnvrescnv  6156  fparlem3  8070  fparlem4  8071  tposfo  8209  tposf  8210  xpider  8738  xpcomf1o  9007  fpwwe2lem12  10573  trclublem  14938  pjdm  21650  tposmap  22378  ordtrest2  23125  ustneism  24145  trust  24151  metustsym  24477  metust  24480  gtiso  32675  padct  32694  gsumhashmul  33045  ordtcnvNEW  33904  ordtrest2NEW  33907  mbfmcst  34244  eulerpartlemt  34356  0rrv  34436  msrf  35523  mthmpps  35563  elrn3  35743  trclubgNEW  43601  xpexb  44437  tposresxp  48865  tposf1o  48866
  Copyright terms: Public domain W3C validator