| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvxp | Structured version Visualization version GIF version | ||
| Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvopab 6110 | . . 3 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | ancom 460 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
| 3 | 2 | opabbii 5174 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
| 4 | 1, 3 | eqtri 2752 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
| 5 | df-xp 5644 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 6 | 5 | cnveqi 5838 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 7 | df-xp 5644 | . 2 ⊢ (𝐵 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
| 8 | 4, 6, 7 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5169 × cxp 5636 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: xp0 6131 rnxp 6143 rnxpss 6145 dminxp 6153 imainrect 6154 cnvrescnv 6168 fparlem3 8093 fparlem4 8094 tposfo 8232 tposf 8233 xpider 8761 xpcomf1o 9030 fpwwe2lem12 10595 trclublem 14961 pjdm 21616 tposmap 22344 ordtrest2 23091 ustneism 24111 trust 24117 metustsym 24443 metust 24446 gtiso 32624 padct 32643 gsumhashmul 33001 ordtcnvNEW 33910 ordtrest2NEW 33913 mbfmcst 34250 eulerpartlemt 34362 0rrv 34442 msrf 35529 mthmpps 35569 elrn3 35749 trclubgNEW 43607 xpexb 44443 tposresxp 48871 tposf1o 48872 |
| Copyright terms: Public domain | W3C validator |