![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvxp | Structured version Visualization version GIF version |
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 6139 | . . 3 ⊢ ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | ancom 462 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
3 | 2 | opabbii 5216 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
4 | 1, 3 | eqtri 2761 | . 2 ⊢ ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
5 | df-xp 5683 | . . 3 ⊢ (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
6 | 5 | cnveqi 5875 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
7 | df-xp 5683 | . 2 ⊢ (𝐵 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
8 | 4, 6, 7 | 3eqtr4i 2771 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 {copab 5211 × cxp 5675 ◡ccnv 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: xp0 6158 rnxp 6170 rnxpss 6172 dminxp 6180 imainrect 6181 cnvrescnv 6195 fparlem3 8100 fparlem4 8101 tposfo 8238 tposf 8239 xpider 8782 xpcomf1o 9061 fpwwe2lem12 10637 trclublem 14942 pjdm 21262 tposmap 21959 ordtrest2 22708 ustneism 23728 trust 23734 metustsym 24064 metust 24067 gtiso 31922 padct 31944 gsumhashmul 32208 ordtcnvNEW 32900 ordtrest2NEW 32903 mbfmcst 33258 eulerpartlemt 33370 0rrv 33450 msrf 34533 mthmpps 34573 elrn3 34732 trclubgNEW 42369 xpexb 43213 |
Copyright terms: Public domain | W3C validator |