| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvxp | Structured version Visualization version GIF version | ||
| Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvopab 6126 | . . 3 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | ancom 460 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
| 3 | 2 | opabbii 5186 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
| 4 | 1, 3 | eqtri 2758 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
| 5 | df-xp 5660 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 6 | 5 | cnveqi 5854 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 7 | df-xp 5660 | . 2 ⊢ (𝐵 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
| 8 | 4, 6, 7 | 3eqtr4i 2768 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {copab 5181 × cxp 5652 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: xp0 6147 rnxp 6159 rnxpss 6161 dminxp 6169 imainrect 6170 cnvrescnv 6184 fparlem3 8113 fparlem4 8114 tposfo 8252 tposf 8253 xpider 8802 xpcomf1o 9075 fpwwe2lem12 10656 trclublem 15014 pjdm 21667 tposmap 22395 ordtrest2 23142 ustneism 24162 trust 24168 metustsym 24494 metust 24497 gtiso 32678 padct 32697 gsumhashmul 33055 ordtcnvNEW 33951 ordtrest2NEW 33954 mbfmcst 34291 eulerpartlemt 34403 0rrv 34483 msrf 35564 mthmpps 35604 elrn3 35779 trclubgNEW 43642 xpexb 44478 tposresxp 48858 tposf1o 48859 |
| Copyright terms: Public domain | W3C validator |