![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvxp | Structured version Visualization version GIF version |
Description: The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvxp | ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 6135 | . . 3 ⊢ ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | ancom 461 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) | |
3 | 2 | opabbii 5214 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
4 | 1, 3 | eqtri 2760 | . 2 ⊢ ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} |
5 | df-xp 5681 | . . 3 ⊢ (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
6 | 5 | cnveqi 5872 | . 2 ⊢ ◡(𝐴 × 𝐵) = ◡{⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
7 | df-xp 5681 | . 2 ⊢ (𝐵 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)} | |
8 | 4, 6, 7 | 3eqtr4i 2770 | 1 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 {copab 5209 × cxp 5673 ◡ccnv 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 |
This theorem is referenced by: xp0 6154 rnxp 6166 rnxpss 6168 dminxp 6176 imainrect 6177 cnvrescnv 6191 fparlem3 8096 fparlem4 8097 tposfo 8234 tposf 8235 xpider 8778 xpcomf1o 9057 fpwwe2lem12 10633 trclublem 14938 pjdm 21253 tposmap 21950 ordtrest2 22699 ustneism 23719 trust 23725 metustsym 24055 metust 24058 gtiso 31909 padct 31931 gsumhashmul 32195 ordtcnvNEW 32888 ordtrest2NEW 32891 mbfmcst 33246 eulerpartlemt 33358 0rrv 33438 msrf 34521 mthmpps 34561 elrn3 34720 trclubgNEW 42354 xpexb 43198 |
Copyright terms: Public domain | W3C validator |