| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5737 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 5838 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 6130 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 6113 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2760 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 × cxp 5636 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: xpnz 6132 xpdisj2 6135 difxp1 6138 dmxpss 6144 rnxpid 6146 xpcan 6149 unixp 6255 dfpo2 6269 fconst5 7180 dfac5lem3 10078 djuassen 10132 xpdjuen 10133 alephadd 10530 fpwwe2lem12 10595 0ssc 17799 fuchom 17926 frmdplusg 18781 mulgfval 19001 mulgfvalALT 19002 mulgfvi 19005 ga0 19230 efgval 19647 psrplusg 21845 psrvscafval 21857 opsrle 21954 ply1plusgfvi 22126 txindislem 23520 txhaus 23534 0met 24254 2ndimaxp 32570 aciunf1 32587 hashxpe 32732 mbfmcst 34250 0rrv 34442 sate0 35402 mexval 35489 mdvval 35491 mpstval 35522 elima4 35763 finxp00 37390 isbnd3 37778 zrdivrng 37947 dmrnxp 48825 mofeu 48836 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |