| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) Avoid axioms. (Revised by TM, 1-Feb-2026.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | simprr 772 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅)) → 𝑦 ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅)) |
| 4 | 3 | nex 1801 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅)) |
| 5 | 4 | nex 1801 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅)) |
| 6 | elxpi 5641 | . . 3 ⊢ (𝑧 ∈ (𝐴 × ∅) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅))) | |
| 7 | 5, 6 | mto 197 | . 2 ⊢ ¬ 𝑧 ∈ (𝐴 × ∅) |
| 8 | 7 | nel0 4303 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 〈cop 4581 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-nul 4283 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: xpnz 6111 xpdisj2 6114 difxp1 6117 dmxpss 6123 rnxpid 6125 xpcan 6128 unixp 6234 dfpo2 6248 fconst5 7146 dfac5lem3 10023 djuassen 10077 xpdjuen 10078 alephadd 10475 fpwwe2lem12 10540 0ssc 17746 fuchom 17873 frmdplusg 18764 mulgfval 18984 mulgfvalALT 18985 mulgfvi 18988 ga0 19212 efgval 19631 psrplusg 21875 psrvscafval 21887 opsrle 21983 ply1plusgfvi 22155 txindislem 23549 txhaus 23563 0met 24282 2ndimaxp 32630 aciunf1 32647 hashxpe 32794 mbfmcst 34293 0rrv 34485 sate0 35480 mexval 35567 mdvval 35569 mpstval 35600 elima4 35841 finxp00 37467 isbnd3 37844 zrdivrng 38013 dmrnxp 48961 mofeu 48972 fucofvalne 49450 |
| Copyright terms: Public domain | W3C validator |