Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
xp0 | ⊢ (𝐴 × ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xp 5685 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
2 | 1 | cnveqi 5783 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
3 | cnvxp 6060 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
4 | cnv0 6044 | . 2 ⊢ ◡∅ = ∅ | |
5 | 2, 3, 4 | 3eqtr3i 2774 | 1 ⊢ (𝐴 × ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 × cxp 5587 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: xpnz 6062 xpdisj2 6065 difxp1 6068 dmxpss 6074 rnxpid 6076 xpcan 6079 unixp 6185 dfpo2 6199 fconst5 7081 dfac5lem3 9881 djuassen 9934 xpdjuen 9935 alephadd 10333 fpwwe2lem12 10398 0ssc 17552 fuchom 17678 fuchomOLD 17679 frmdplusg 18493 mulgfval 18702 mulgfvalALT 18703 mulgfvi 18706 ga0 18904 efgval 19323 psrplusg 21150 psrvscafval 21159 opsrle 21248 ply1plusgfvi 21413 txindislem 22784 txhaus 22798 0met 23519 2ndimaxp 30984 aciunf1 31000 hashxpe 31127 mbfmcst 32226 0rrv 32418 sate0 33377 mexval 33464 mdvval 33466 mpstval 33497 elima4 33750 finxp00 35573 isbnd3 35942 zrdivrng 36111 mofeu 46175 |
Copyright terms: Public domain | W3C validator |