![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
xp0 | ⊢ (𝐴 × ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xp 5404 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
2 | 1 | cnveqi 5500 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
3 | cnvxp 5768 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
4 | cnv0 5753 | . 2 ⊢ ◡∅ = ∅ | |
5 | 2, 3, 4 | 3eqtr3i 2829 | 1 ⊢ (𝐴 × ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∅c0 4115 × cxp 5310 ◡ccnv 5311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 |
This theorem is referenced by: xpnz 5770 xpdisj2 5773 difxp1 5776 dmxpss 5782 rnxpid 5784 xpcan 5787 unixp 5887 fconst5 6700 dfac5lem3 9234 xpcdaen 9293 fpwwe2lem13 9752 comfffval 16672 0ssc 16811 fuchom 16935 xpccofval 17137 frmdplusg 17707 mulgfval 17858 mulgfvi 17861 ga0 18043 symgplusg 18121 efgval 18443 psrplusg 19704 psrvscafval 19713 opsrle 19798 ply1plusgfvi 19934 txindislem 21765 txhaus 21779 0met 22499 aciunf1 29982 mbfmcst 30837 0rrv 31030 mexval 31916 mdvval 31918 mpstval 31949 dfpo2 32159 elima4 32191 finxp00 33737 isbnd3 34070 zrdivrng 34239 |
Copyright terms: Public domain | W3C validator |