| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5715 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 5814 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 6104 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 6087 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2762 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 × cxp 5614 ◡ccnv 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: xpnz 6106 xpdisj2 6109 difxp1 6112 dmxpss 6118 rnxpid 6120 xpcan 6123 unixp 6229 dfpo2 6243 fconst5 7140 dfac5lem3 10013 djuassen 10067 xpdjuen 10068 alephadd 10465 fpwwe2lem12 10530 0ssc 17741 fuchom 17868 frmdplusg 18759 mulgfval 18979 mulgfvalALT 18980 mulgfvi 18983 ga0 19208 efgval 19627 psrplusg 21871 psrvscafval 21883 opsrle 21980 ply1plusgfvi 22152 txindislem 23546 txhaus 23560 0met 24279 2ndimaxp 32623 aciunf1 32640 hashxpe 32784 mbfmcst 34267 0rrv 34459 sate0 35447 mexval 35534 mdvval 35536 mpstval 35567 elima4 35808 finxp00 37435 isbnd3 37823 zrdivrng 37992 dmrnxp 48867 mofeu 48878 fucofvalne 49356 |
| Copyright terms: Public domain | W3C validator |