| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5753 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 5854 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 6146 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 6129 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2766 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 × cxp 5652 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: xpnz 6148 xpdisj2 6151 difxp1 6154 dmxpss 6160 rnxpid 6162 xpcan 6165 unixp 6271 dfpo2 6285 fconst5 7198 dfac5lem3 10139 djuassen 10193 xpdjuen 10194 alephadd 10591 fpwwe2lem12 10656 0ssc 17850 fuchom 17977 frmdplusg 18832 mulgfval 19052 mulgfvalALT 19053 mulgfvi 19056 ga0 19281 efgval 19698 psrplusg 21896 psrvscafval 21908 opsrle 22005 ply1plusgfvi 22177 txindislem 23571 txhaus 23585 0met 24305 2ndimaxp 32624 aciunf1 32641 hashxpe 32786 mbfmcst 34291 0rrv 34483 sate0 35437 mexval 35524 mdvval 35526 mpstval 35557 elima4 35793 finxp00 37420 isbnd3 37808 zrdivrng 37977 dmrnxp 48815 mofeu 48826 fucofvalne 49236 |
| Copyright terms: Public domain | W3C validator |