| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5740 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 5841 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 6133 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 6116 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2761 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4299 × cxp 5639 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: xpnz 6135 xpdisj2 6138 difxp1 6141 dmxpss 6147 rnxpid 6149 xpcan 6152 unixp 6258 dfpo2 6272 fconst5 7183 dfac5lem3 10085 djuassen 10139 xpdjuen 10140 alephadd 10537 fpwwe2lem12 10602 0ssc 17806 fuchom 17933 frmdplusg 18788 mulgfval 19008 mulgfvalALT 19009 mulgfvi 19012 ga0 19237 efgval 19654 psrplusg 21852 psrvscafval 21864 opsrle 21961 ply1plusgfvi 22133 txindislem 23527 txhaus 23541 0met 24261 2ndimaxp 32577 aciunf1 32594 hashxpe 32739 mbfmcst 34257 0rrv 34449 sate0 35409 mexval 35496 mdvval 35498 mpstval 35529 elima4 35770 finxp00 37397 isbnd3 37785 zrdivrng 37954 dmrnxp 48829 mofeu 48840 fucofvalne 49318 |
| Copyright terms: Public domain | W3C validator |