MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp0 Structured version   Visualization version   GIF version

Theorem xp0 5719
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) Avoid axioms. (Revised by TM, 1-Feb-2026.)
Assertion
Ref Expression
xp0 (𝐴 × ∅) = ∅

Proof of Theorem xp0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4287 . . . . . 6 ¬ 𝑦 ∈ ∅
2 simprr 772 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ ∅)) → 𝑦 ∈ ∅)
31, 2mto 197 . . . . 5 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ ∅))
43nex 1801 . . . 4 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ ∅))
54nex 1801 . . 3 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ ∅))
6 elxpi 5641 . . 3 (𝑧 ∈ (𝐴 × ∅) → ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ ∅)))
75, 6mto 197 . 2 ¬ 𝑧 ∈ (𝐴 × ∅)
87nel0 4303 1 (𝐴 × ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113  c0 4282  cop 4581   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-dif 3901  df-nul 4283  df-opab 5156  df-xp 5625
This theorem is referenced by:  xpnz  6111  xpdisj2  6114  difxp1  6117  dmxpss  6123  rnxpid  6125  xpcan  6128  unixp  6234  dfpo2  6248  fconst5  7146  dfac5lem3  10023  djuassen  10077  xpdjuen  10078  alephadd  10475  fpwwe2lem12  10540  0ssc  17746  fuchom  17873  frmdplusg  18764  mulgfval  18984  mulgfvalALT  18985  mulgfvi  18988  ga0  19212  efgval  19631  psrplusg  21875  psrvscafval  21887  opsrle  21983  ply1plusgfvi  22155  txindislem  23549  txhaus  23563  0met  24282  2ndimaxp  32630  aciunf1  32647  hashxpe  32794  mbfmcst  34293  0rrv  34485  sate0  35480  mexval  35567  mdvval  35569  mpstval  35600  elima4  35841  finxp00  37467  isbnd3  37844  zrdivrng  38013  dmrnxp  48961  mofeu  48972  fucofvalne  49450
  Copyright terms: Public domain W3C validator