Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
xp0 | ⊢ (𝐴 × ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xp 5674 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
2 | 1 | cnveqi 5771 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
3 | cnvxp 6048 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
4 | cnv0 6032 | . 2 ⊢ ◡∅ = ∅ | |
5 | 2, 3, 4 | 3eqtr3i 2775 | 1 ⊢ (𝐴 × ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∅c0 4254 × cxp 5577 ◡ccnv 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5585 df-rel 5586 df-cnv 5587 |
This theorem is referenced by: xpnz 6050 xpdisj2 6053 difxp1 6056 dmxpss 6062 rnxpid 6064 xpcan 6067 unixp 6173 dfpo2 6187 fconst5 7060 dfac5lem3 9787 djuassen 9840 xpdjuen 9841 alephadd 10239 fpwwe2lem12 10304 0ssc 17443 fuchom 17569 fuchomOLD 17570 frmdplusg 18383 mulgfval 18592 mulgfvalALT 18593 mulgfvi 18596 ga0 18794 efgval 19213 psrplusg 21035 psrvscafval 21044 opsrle 21133 ply1plusgfvi 21298 txindislem 22667 txhaus 22681 0met 23402 2ndimaxp 30860 aciunf1 30877 hashxpe 31004 mbfmcst 32101 0rrv 32293 sate0 33252 mexval 33339 mdvval 33341 mpstval 33372 elima4 33631 finxp00 35479 isbnd3 35848 zrdivrng 36017 mofeu 46036 |
Copyright terms: Public domain | W3C validator |