![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
xp0 | ⊢ (𝐴 × ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xp 5798 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
2 | 1 | cnveqi 5899 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
3 | cnvxp 6188 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
4 | cnv0 6172 | . 2 ⊢ ◡∅ = ∅ | |
5 | 2, 3, 4 | 3eqtr3i 2776 | 1 ⊢ (𝐴 × ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 × cxp 5698 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: xpnz 6190 xpdisj2 6193 difxp1 6196 dmxpss 6202 rnxpid 6204 xpcan 6207 unixp 6313 dfpo2 6327 fconst5 7243 dfac5lem3 10194 djuassen 10248 xpdjuen 10249 alephadd 10646 fpwwe2lem12 10711 0ssc 17901 fuchom 18030 fuchomOLD 18031 frmdplusg 18889 mulgfval 19109 mulgfvalALT 19110 mulgfvi 19113 ga0 19338 efgval 19759 psrplusg 21979 psrvscafval 21991 opsrle 22088 ply1plusgfvi 22264 txindislem 23662 txhaus 23676 0met 24397 2ndimaxp 32665 aciunf1 32681 hashxpe 32814 mbfmcst 34224 0rrv 34416 sate0 35383 mexval 35470 mdvval 35472 mpstval 35503 elima4 35739 finxp00 37368 isbnd3 37744 zrdivrng 37913 mofeu 48561 |
Copyright terms: Public domain | W3C validator |