![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
Ref | Expression |
---|---|
xp0 | ⊢ (𝐴 × ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xp 5786 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
2 | 1 | cnveqi 5887 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
3 | cnvxp 6178 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
4 | cnv0 6162 | . 2 ⊢ ◡∅ = ∅ | |
5 | 2, 3, 4 | 3eqtr3i 2770 | 1 ⊢ (𝐴 × ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∅c0 4338 × cxp 5686 ◡ccnv 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 |
This theorem is referenced by: xpnz 6180 xpdisj2 6183 difxp1 6186 dmxpss 6192 rnxpid 6194 xpcan 6197 unixp 6303 dfpo2 6317 fconst5 7225 dfac5lem3 10162 djuassen 10216 xpdjuen 10217 alephadd 10614 fpwwe2lem12 10679 0ssc 17887 fuchom 18016 fuchomOLD 18017 frmdplusg 18879 mulgfval 19099 mulgfvalALT 19100 mulgfvi 19103 ga0 19328 efgval 19749 psrplusg 21973 psrvscafval 21985 opsrle 22082 ply1plusgfvi 22258 txindislem 23656 txhaus 23670 0met 24391 2ndimaxp 32662 aciunf1 32679 hashxpe 32816 mbfmcst 34240 0rrv 34432 sate0 35399 mexval 35486 mdvval 35488 mpstval 35519 elima4 35756 finxp00 37384 isbnd3 37770 zrdivrng 37939 mofeu 48677 |
Copyright terms: Public domain | W3C validator |