| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp0 | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 5722 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 5821 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 6110 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 6093 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2760 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 × cxp 5621 ◡ccnv 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 |
| This theorem is referenced by: xpnz 6112 xpdisj2 6115 difxp1 6118 dmxpss 6124 rnxpid 6126 xpcan 6129 unixp 6234 dfpo2 6248 fconst5 7146 dfac5lem3 10038 djuassen 10092 xpdjuen 10093 alephadd 10490 fpwwe2lem12 10555 0ssc 17762 fuchom 17889 frmdplusg 18746 mulgfval 18966 mulgfvalALT 18967 mulgfvi 18970 ga0 19195 efgval 19614 psrplusg 21861 psrvscafval 21873 opsrle 21970 ply1plusgfvi 22142 txindislem 23536 txhaus 23550 0met 24270 2ndimaxp 32603 aciunf1 32620 hashxpe 32765 mbfmcst 34226 0rrv 34418 sate0 35387 mexval 35474 mdvval 35476 mpstval 35507 elima4 35748 finxp00 37375 isbnd3 37763 zrdivrng 37932 dmrnxp 48822 mofeu 48833 fucofvalne 49311 |
| Copyright terms: Public domain | W3C validator |