MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2dju Structured version   Visualization version   GIF version

Theorem xp2dju 10063
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 5681 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 8388 . . . 4 2o = {∅, 1o}
3 df-pr 4574 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2754 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 5637 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 9789 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2764 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  c0 4278  {csn 4571  {cpr 4573   × cxp 5609  1oc1o 8373  2oc2o 8374  cdju 9786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-nul 4279  df-pr 4574  df-opab 5149  df-xp 5617  df-suc 6307  df-1o 8380  df-2o 8381  df-dju 9789
This theorem is referenced by:  pwdju1  10077  unctb  10090  infdjuabs  10091  ackbij1lem5  10109  fin56  10279
  Copyright terms: Public domain W3C validator