MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2dju Structured version   Visualization version   GIF version

Theorem xp2dju 9790
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 5618 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 8217 . . . 4 2o = {∅, 1o}
3 df-pr 4544 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2765 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 5577 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 9517 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2775 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cun 3864  c0 4237  {csn 4541  {cpr 4543   × cxp 5549  1oc1o 8195  2oc2o 8196  cdju 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-pr 4544  df-opab 5116  df-xp 5557  df-suc 6219  df-1o 8202  df-2o 8203  df-dju 9517
This theorem is referenced by:  pwdju1  9804  unctb  9819  infdjuabs  9820  ackbij1lem5  9838  fin56  10007
  Copyright terms: Public domain W3C validator