MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2dju Structured version   Visualization version   GIF version

Theorem xp2dju 10079
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 5691 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 8402 . . . 4 2o = {∅, 1o}
3 df-pr 4580 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2756 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 5647 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 9805 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2766 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3896  c0 4282  {csn 4577  {cpr 4579   × cxp 5619  1oc1o 8387  2oc2o 8388  cdju 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-pr 4580  df-opab 5158  df-xp 5627  df-suc 6320  df-1o 8394  df-2o 8395  df-dju 9805
This theorem is referenced by:  pwdju1  10093  unctb  10106  infdjuabs  10107  ackbij1lem5  10125  fin56  10295
  Copyright terms: Public domain W3C validator