MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2dju Structured version   Visualization version   GIF version

Theorem xp2dju 9863
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 5647 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 8282 . . . 4 2o = {∅, 1o}
3 df-pr 4561 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2766 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 5606 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 9590 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2776 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  c0 4253  {csn 4558  {cpr 4560   × cxp 5578  1oc1o 8260  2oc2o 8261  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-pr 4561  df-opab 5133  df-xp 5586  df-suc 6257  df-1o 8267  df-2o 8268  df-dju 9590
This theorem is referenced by:  pwdju1  9877  unctb  9892  infdjuabs  9893  ackbij1lem5  9911  fin56  10080
  Copyright terms: Public domain W3C validator