Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp2dju | Structured version Visualization version GIF version |
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 5647 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
2 | df2o3 8282 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | df-pr 4561 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
4 | 2, 3 | eqtri 2766 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
5 | 4 | xpeq1i 5606 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
6 | df-dju 9590 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
7 | 1, 5, 6 | 3eqtr4i 2776 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ∅c0 4253 {csn 4558 {cpr 4560 × cxp 5578 1oc1o 8260 2oc2o 8261 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-pr 4561 df-opab 5133 df-xp 5586 df-suc 6257 df-1o 8267 df-2o 8268 df-dju 9590 |
This theorem is referenced by: pwdju1 9877 unctb 9892 infdjuabs 9893 ackbij1lem5 9911 fin56 10080 |
Copyright terms: Public domain | W3C validator |