![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp2dju | Structured version Visualization version GIF version |
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 5769 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
2 | df2o3 8530 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | df-pr 4651 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
4 | 2, 3 | eqtri 2768 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
5 | 4 | xpeq1i 5726 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
6 | df-dju 9970 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
7 | 1, 5, 6 | 3eqtr4i 2778 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∅c0 4352 {csn 4648 {cpr 4650 × cxp 5698 1oc1o 8515 2oc2o 8516 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-pr 4651 df-opab 5229 df-xp 5706 df-suc 6401 df-1o 8522 df-2o 8523 df-dju 9970 |
This theorem is referenced by: pwdju1 10260 unctb 10273 infdjuabs 10274 ackbij1lem5 10292 fin56 10462 |
Copyright terms: Public domain | W3C validator |