Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp2dju | Structured version Visualization version GIF version |
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 5656 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
2 | df2o3 8305 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | df-pr 4564 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
4 | 2, 3 | eqtri 2766 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
5 | 4 | xpeq1i 5615 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
6 | df-dju 9659 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
7 | 1, 5, 6 | 3eqtr4i 2776 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∅c0 4256 {csn 4561 {cpr 4563 × cxp 5587 1oc1o 8290 2oc2o 8291 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-pr 4564 df-opab 5137 df-xp 5595 df-suc 6272 df-1o 8297 df-2o 8298 df-dju 9659 |
This theorem is referenced by: pwdju1 9946 unctb 9961 infdjuabs 9962 ackbij1lem5 9980 fin56 10149 |
Copyright terms: Public domain | W3C validator |