![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp2dju | Structured version Visualization version GIF version |
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xp2dju | ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundir 5758 | . 2 ⊢ (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
2 | df2o3 8513 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | df-pr 4634 | . . . 4 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
4 | 2, 3 | eqtri 2763 | . . 3 ⊢ 2o = ({∅} ∪ {1o}) |
5 | 4 | xpeq1i 5715 | . 2 ⊢ (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴) |
6 | df-dju 9939 | . 2 ⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) | |
7 | 1, 5, 6 | 3eqtr4i 2773 | 1 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∅c0 4339 {csn 4631 {cpr 4633 × cxp 5687 1oc1o 8498 2oc2o 8499 ⊔ cdju 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-pr 4634 df-opab 5211 df-xp 5695 df-suc 6392 df-1o 8505 df-2o 8506 df-dju 9939 |
This theorem is referenced by: pwdju1 10229 unctb 10242 infdjuabs 10243 ackbij1lem5 10261 fin56 10431 |
Copyright terms: Public domain | W3C validator |