MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2dju Structured version   Visualization version   GIF version

Theorem xp2dju 10215
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 5758 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 8513 . . . 4 2o = {∅, 1o}
3 df-pr 4634 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2763 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 5715 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 9939 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2773 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  c0 4339  {csn 4631  {cpr 4633   × cxp 5687  1oc1o 8498  2oc2o 8499  cdju 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-pr 4634  df-opab 5211  df-xp 5695  df-suc 6392  df-1o 8505  df-2o 8506  df-dju 9939
This theorem is referenced by:  pwdju1  10229  unctb  10242  infdjuabs  10243  ackbij1lem5  10261  fin56  10431
  Copyright terms: Public domain W3C validator