MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2dju Structured version   Visualization version   GIF version

Theorem xp2dju 10090
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju (2o × 𝐴) = (𝐴𝐴)

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 5693 . 2 (({∅} ∪ {1o}) × 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
2 df2o3 8403 . . . 4 2o = {∅, 1o}
3 df-pr 4582 . . . 4 {∅, 1o} = ({∅} ∪ {1o})
42, 3eqtri 2752 . . 3 2o = ({∅} ∪ {1o})
54xpeq1i 5649 . 2 (2o × 𝐴) = (({∅} ∪ {1o}) × 𝐴)
6 df-dju 9816 . 2 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
71, 5, 63eqtr4i 2762 1 (2o × 𝐴) = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3903  c0 4286  {csn 4579  {cpr 4581   × cxp 5621  1oc1o 8388  2oc2o 8389  cdju 9813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-dif 3908  df-un 3910  df-nul 4287  df-pr 4582  df-opab 5158  df-xp 5629  df-suc 6317  df-1o 8395  df-2o 8396  df-dju 9816
This theorem is referenced by:  pwdju1  10104  unctb  10117  infdjuabs  10118  ackbij1lem5  10136  fin56  10306
  Copyright terms: Public domain W3C validator