MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin56 Structured version   Visualization version   GIF version

Theorem fin56 10287
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin56 (𝐴 ∈ FinV𝐴 ∈ FinVI)

Proof of Theorem fin56
StepHypRef Expression
1 orc 867 . . . . 5 (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
2 sdom2en01 10196 . . . . 5 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
31, 2sylibr 234 . . . 4 (𝐴 = ∅ → 𝐴 ≺ 2o)
43orcd 873 . . 3 (𝐴 = ∅ → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
5 onfin2 9130 . . . . . . . 8 ω = (On ∩ Fin)
6 inss2 4189 . . . . . . . 8 (On ∩ Fin) ⊆ Fin
75, 6eqsstri 3982 . . . . . . 7 ω ⊆ Fin
8 2onn 8560 . . . . . . 7 2o ∈ ω
97, 8sselii 3932 . . . . . 6 2o ∈ Fin
10 relsdom 8879 . . . . . . 7 Rel ≺
1110brrelex1i 5675 . . . . . 6 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
12 fidomtri 9889 . . . . . 6 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
139, 11, 12sylancr 587 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
14 xp2dju 10071 . . . . . . . 8 (2o × 𝐴) = (𝐴𝐴)
15 xpdom1g 8991 . . . . . . . . 9 ((𝐴 ∈ V ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1611, 15sylan 580 . . . . . . . 8 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1714, 16eqbrtrrid 5128 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (𝐴𝐴) ≼ (𝐴 × 𝐴))
18 sdomdomtr 9027 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴))
1917, 18syldan 591 . . . . . 6 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → 𝐴 ≺ (𝐴 × 𝐴))
2019ex 412 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴𝐴 ≺ (𝐴 × 𝐴)))
2113, 20sylbird 260 . . . 4 (𝐴 ≺ (𝐴𝐴) → (¬ 𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2221orrd 863 . . 3 (𝐴 ≺ (𝐴𝐴) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
234, 22jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
24 isfin5 10193 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
25 isfin6 10194 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2623, 24, 253imtr4i 292 1 (𝐴 ∈ FinV𝐴 ∈ FinVI)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  c0 4284   class class class wbr 5092   × cxp 5617  Oncon0 6307  ωcom 7799  1oc1o 8381  2oc2o 8382  cen 8869  cdom 8870  csdm 8871  Fincfn 8872  cdju 9794  FinVcfin5 10176  FinVIcfin6 10177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-fin5 10183  df-fin6 10184
This theorem is referenced by:  fin2so  37587
  Copyright terms: Public domain W3C validator