| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin56 | Structured version Visualization version GIF version | ||
| Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin56 | ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
| 2 | sdom2en01 10193 | . . . . 5 ⊢ (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ≺ 2o) |
| 4 | 3 | orcd 873 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 5 | onfin2 9125 | . . . . . . . 8 ⊢ ω = (On ∩ Fin) | |
| 6 | inss2 4185 | . . . . . . . 8 ⊢ (On ∩ Fin) ⊆ Fin | |
| 7 | 5, 6 | eqsstri 3976 | . . . . . . 7 ⊢ ω ⊆ Fin |
| 8 | 2onn 8557 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 9 | 7, 8 | sselii 3926 | . . . . . 6 ⊢ 2o ∈ Fin |
| 10 | relsdom 8876 | . . . . . . 7 ⊢ Rel ≺ | |
| 11 | 10 | brrelex1i 5670 | . . . . . 6 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
| 12 | fidomtri 9886 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) | |
| 13 | 9, 11, 12 | sylancr 587 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) |
| 14 | xp2dju 10068 | . . . . . . . 8 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
| 15 | xpdom1g 8987 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 16 | 11, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 17 | 14, 16 | eqbrtrrid 5125 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) |
| 18 | sdomdomtr 9023 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴)) | |
| 19 | 17, 18 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → 𝐴 ≺ (𝐴 × 𝐴)) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 → 𝐴 ≺ (𝐴 × 𝐴))) |
| 21 | 13, 20 | sylbird 260 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (¬ 𝐴 ≺ 2o → 𝐴 ≺ (𝐴 × 𝐴))) |
| 22 | 21 | orrd 863 | . . 3 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 23 | 4, 22 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 24 | isfin5 10190 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
| 25 | isfin6 10191 | . 2 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) | |
| 26 | 23, 24, 25 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∅c0 4280 class class class wbr 5089 × cxp 5612 Oncon0 6306 ωcom 7796 1oc1o 8378 2oc2o 8379 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 ⊔ cdju 9791 FinVcfin5 10173 FinVIcfin6 10174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-fin5 10180 df-fin6 10181 |
| This theorem is referenced by: fin2so 37655 |
| Copyright terms: Public domain | W3C validator |