![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin56 | Structured version Visualization version GIF version |
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin56 | ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
2 | sdom2en01 10299 | . . . . 5 ⊢ (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
3 | 1, 2 | sylibr 233 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ≺ 2o) |
4 | 3 | orcd 869 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
5 | onfin2 9233 | . . . . . . . 8 ⊢ ω = (On ∩ Fin) | |
6 | inss2 4228 | . . . . . . . 8 ⊢ (On ∩ Fin) ⊆ Fin | |
7 | 5, 6 | eqsstri 4015 | . . . . . . 7 ⊢ ω ⊆ Fin |
8 | 2onn 8643 | . . . . . . 7 ⊢ 2o ∈ ω | |
9 | 7, 8 | sselii 3978 | . . . . . 6 ⊢ 2o ∈ Fin |
10 | relsdom 8948 | . . . . . . 7 ⊢ Rel ≺ | |
11 | 10 | brrelex1i 5731 | . . . . . 6 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
12 | fidomtri 9990 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) | |
13 | 9, 11, 12 | sylancr 585 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) |
14 | xp2dju 10173 | . . . . . . . 8 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
15 | xpdom1g 9071 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
16 | 11, 15 | sylan 578 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
17 | 14, 16 | eqbrtrrid 5183 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) |
18 | sdomdomtr 9112 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴)) | |
19 | 17, 18 | syldan 589 | . . . . . 6 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → 𝐴 ≺ (𝐴 × 𝐴)) |
20 | 19 | ex 411 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 → 𝐴 ≺ (𝐴 × 𝐴))) |
21 | 13, 20 | sylbird 259 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (¬ 𝐴 ≺ 2o → 𝐴 ≺ (𝐴 × 𝐴))) |
22 | 21 | orrd 859 | . . 3 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
23 | 4, 22 | jaoi 853 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
24 | isfin5 10296 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
25 | isfin6 10297 | . 2 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) | |
26 | 23, 24, 25 | 3imtr4i 291 | 1 ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∩ cin 3946 ∅c0 4321 class class class wbr 5147 × cxp 5673 Oncon0 6363 ωcom 7857 1oc1o 8461 2oc2o 8462 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 Fincfn 8941 ⊔ cdju 9895 FinVcfin5 10279 FinVIcfin6 10280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-1st 7977 df-2nd 7978 df-1o 8468 df-2o 8469 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-fin5 10286 df-fin6 10287 |
This theorem is referenced by: fin2so 36778 |
Copyright terms: Public domain | W3C validator |