MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin56 Structured version   Visualization version   GIF version

Theorem fin56 10322
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin56 (𝐴 ∈ FinV𝐴 ∈ FinVI)

Proof of Theorem fin56
StepHypRef Expression
1 orc 867 . . . . 5 (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
2 sdom2en01 10231 . . . . 5 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
31, 2sylibr 234 . . . 4 (𝐴 = ∅ → 𝐴 ≺ 2o)
43orcd 873 . . 3 (𝐴 = ∅ → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
5 onfin2 9157 . . . . . . . 8 ω = (On ∩ Fin)
6 inss2 4197 . . . . . . . 8 (On ∩ Fin) ⊆ Fin
75, 6eqsstri 3990 . . . . . . 7 ω ⊆ Fin
8 2onn 8583 . . . . . . 7 2o ∈ ω
97, 8sselii 3940 . . . . . 6 2o ∈ Fin
10 relsdom 8902 . . . . . . 7 Rel ≺
1110brrelex1i 5687 . . . . . 6 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
12 fidomtri 9922 . . . . . 6 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
139, 11, 12sylancr 587 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
14 xp2dju 10106 . . . . . . . 8 (2o × 𝐴) = (𝐴𝐴)
15 xpdom1g 9015 . . . . . . . . 9 ((𝐴 ∈ V ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1611, 15sylan 580 . . . . . . . 8 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1714, 16eqbrtrrid 5138 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (𝐴𝐴) ≼ (𝐴 × 𝐴))
18 sdomdomtr 9051 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴))
1917, 18syldan 591 . . . . . 6 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → 𝐴 ≺ (𝐴 × 𝐴))
2019ex 412 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴𝐴 ≺ (𝐴 × 𝐴)))
2113, 20sylbird 260 . . . 4 (𝐴 ≺ (𝐴𝐴) → (¬ 𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2221orrd 863 . . 3 (𝐴 ≺ (𝐴𝐴) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
234, 22jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
24 isfin5 10228 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
25 isfin6 10229 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2623, 24, 253imtr4i 292 1 (𝐴 ∈ FinV𝐴 ∈ FinVI)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  c0 4292   class class class wbr 5102   × cxp 5629  Oncon0 6320  ωcom 7822  1oc1o 8404  2oc2o 8405  cen 8892  cdom 8893  csdm 8894  Fincfn 8895  cdju 9827  FinVcfin5 10211  FinVIcfin6 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-fin5 10218  df-fin6 10219
This theorem is referenced by:  fin2so  37574
  Copyright terms: Public domain W3C validator