![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin56 | Structured version Visualization version GIF version |
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin56 | ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 862 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
2 | sdom2en01 9559 | . . . . 5 ⊢ (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
3 | 1, 2 | sylibr 235 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ≺ 2o) |
4 | 3 | orcd 868 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
5 | onfin2 8546 | . . . . . . . 8 ⊢ ω = (On ∩ Fin) | |
6 | inss2 4121 | . . . . . . . 8 ⊢ (On ∩ Fin) ⊆ Fin | |
7 | 5, 6 | eqsstri 3917 | . . . . . . 7 ⊢ ω ⊆ Fin |
8 | 2onn 8107 | . . . . . . 7 ⊢ 2o ∈ ω | |
9 | 7, 8 | sselii 3881 | . . . . . 6 ⊢ 2o ∈ Fin |
10 | relsdom 8354 | . . . . . . 7 ⊢ Rel ≺ | |
11 | 10 | brrelex1i 5486 | . . . . . 6 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
12 | fidomtri 9257 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) | |
13 | 9, 11, 12 | sylancr 587 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) |
14 | xp2dju 9437 | . . . . . . . 8 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
15 | xpdom1g 8451 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
16 | 11, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
17 | 14, 16 | eqbrtrrid 4992 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) |
18 | sdomdomtr 8487 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴)) | |
19 | 17, 18 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → 𝐴 ≺ (𝐴 × 𝐴)) |
20 | 19 | ex 413 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 → 𝐴 ≺ (𝐴 × 𝐴))) |
21 | 13, 20 | sylbird 261 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (¬ 𝐴 ≺ 2o → 𝐴 ≺ (𝐴 × 𝐴))) |
22 | 21 | orrd 858 | . . 3 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
23 | 4, 22 | jaoi 852 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
24 | isfin5 9556 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
25 | isfin6 9557 | . 2 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) | |
26 | 23, 24, 25 | 3imtr4i 293 | 1 ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1520 ∈ wcel 2079 Vcvv 3432 ∩ cin 3853 ∅c0 4206 class class class wbr 4956 × cxp 5433 Oncon0 6058 ωcom 7427 1oc1o 7937 2oc2o 7938 ≈ cen 8344 ≼ cdom 8345 ≺ csdm 8346 Fincfn 8347 ⊔ cdju 9162 FinVcfin5 9539 FinVIcfin6 9540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-om 7428 df-1st 7536 df-2nd 7537 df-1o 7944 df-2o 7945 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-dju 9165 df-card 9203 df-fin5 9546 df-fin6 9547 |
This theorem is referenced by: fin2so 34356 |
Copyright terms: Public domain | W3C validator |