| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin56 | Structured version Visualization version GIF version | ||
| Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin56 | ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
| 2 | sdom2en01 10316 | . . . . 5 ⊢ (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ≺ 2o) |
| 4 | 3 | orcd 873 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 5 | onfin2 9240 | . . . . . . . 8 ⊢ ω = (On ∩ Fin) | |
| 6 | inss2 4213 | . . . . . . . 8 ⊢ (On ∩ Fin) ⊆ Fin | |
| 7 | 5, 6 | eqsstri 4005 | . . . . . . 7 ⊢ ω ⊆ Fin |
| 8 | 2onn 8654 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 9 | 7, 8 | sselii 3955 | . . . . . 6 ⊢ 2o ∈ Fin |
| 10 | relsdom 8966 | . . . . . . 7 ⊢ Rel ≺ | |
| 11 | 10 | brrelex1i 5710 | . . . . . 6 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
| 12 | fidomtri 10007 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) | |
| 13 | 9, 11, 12 | sylancr 587 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) |
| 14 | xp2dju 10191 | . . . . . . . 8 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
| 15 | xpdom1g 9083 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 16 | 11, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 17 | 14, 16 | eqbrtrrid 5155 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) |
| 18 | sdomdomtr 9124 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴)) | |
| 19 | 17, 18 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → 𝐴 ≺ (𝐴 × 𝐴)) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 → 𝐴 ≺ (𝐴 × 𝐴))) |
| 21 | 13, 20 | sylbird 260 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (¬ 𝐴 ≺ 2o → 𝐴 ≺ (𝐴 × 𝐴))) |
| 22 | 21 | orrd 863 | . . 3 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 23 | 4, 22 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 24 | isfin5 10313 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
| 25 | isfin6 10314 | . 2 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) | |
| 26 | 23, 24, 25 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ∅c0 4308 class class class wbr 5119 × cxp 5652 Oncon0 6352 ωcom 7861 1oc1o 8473 2oc2o 8474 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 Fincfn 8959 ⊔ cdju 9912 FinVcfin5 10296 FinVIcfin6 10297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-fin5 10303 df-fin6 10304 |
| This theorem is referenced by: fin2so 37631 |
| Copyright terms: Public domain | W3C validator |