MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin56 Structured version   Visualization version   GIF version

Theorem fin56 10346
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin56 (𝐴 ∈ FinV𝐴 ∈ FinVI)

Proof of Theorem fin56
StepHypRef Expression
1 orc 867 . . . . 5 (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
2 sdom2en01 10255 . . . . 5 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
31, 2sylibr 234 . . . 4 (𝐴 = ∅ → 𝐴 ≺ 2o)
43orcd 873 . . 3 (𝐴 = ∅ → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
5 onfin2 9180 . . . . . . . 8 ω = (On ∩ Fin)
6 inss2 4201 . . . . . . . 8 (On ∩ Fin) ⊆ Fin
75, 6eqsstri 3993 . . . . . . 7 ω ⊆ Fin
8 2onn 8606 . . . . . . 7 2o ∈ ω
97, 8sselii 3943 . . . . . 6 2o ∈ Fin
10 relsdom 8925 . . . . . . 7 Rel ≺
1110brrelex1i 5694 . . . . . 6 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
12 fidomtri 9946 . . . . . 6 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
139, 11, 12sylancr 587 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
14 xp2dju 10130 . . . . . . . 8 (2o × 𝐴) = (𝐴𝐴)
15 xpdom1g 9038 . . . . . . . . 9 ((𝐴 ∈ V ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1611, 15sylan 580 . . . . . . . 8 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1714, 16eqbrtrrid 5143 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (𝐴𝐴) ≼ (𝐴 × 𝐴))
18 sdomdomtr 9074 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴))
1917, 18syldan 591 . . . . . 6 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → 𝐴 ≺ (𝐴 × 𝐴))
2019ex 412 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴𝐴 ≺ (𝐴 × 𝐴)))
2113, 20sylbird 260 . . . 4 (𝐴 ≺ (𝐴𝐴) → (¬ 𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2221orrd 863 . . 3 (𝐴 ≺ (𝐴𝐴) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
234, 22jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
24 isfin5 10252 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
25 isfin6 10253 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2623, 24, 253imtr4i 292 1 (𝐴 ∈ FinV𝐴 ∈ FinVI)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  c0 4296   class class class wbr 5107   × cxp 5636  Oncon0 6332  ωcom 7842  1oc1o 8427  2oc2o 8428  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  cdju 9851  FinVcfin5 10235  FinVIcfin6 10236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-fin5 10242  df-fin6 10243
This theorem is referenced by:  fin2so  37601
  Copyright terms: Public domain W3C validator