MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin56 Structured version   Visualization version   GIF version

Theorem fin56 10462
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin56 (𝐴 ∈ FinV𝐴 ∈ FinVI)

Proof of Theorem fin56
StepHypRef Expression
1 orc 866 . . . . 5 (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
2 sdom2en01 10371 . . . . 5 (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o))
31, 2sylibr 234 . . . 4 (𝐴 = ∅ → 𝐴 ≺ 2o)
43orcd 872 . . 3 (𝐴 = ∅ → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
5 onfin2 9294 . . . . . . . 8 ω = (On ∩ Fin)
6 inss2 4259 . . . . . . . 8 (On ∩ Fin) ⊆ Fin
75, 6eqsstri 4043 . . . . . . 7 ω ⊆ Fin
8 2onn 8698 . . . . . . 7 2o ∈ ω
97, 8sselii 4005 . . . . . 6 2o ∈ Fin
10 relsdom 9010 . . . . . . 7 Rel ≺
1110brrelex1i 5756 . . . . . 6 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
12 fidomtri 10062 . . . . . 6 ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
139, 11, 12sylancr 586 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴 ↔ ¬ 𝐴 ≺ 2o))
14 xp2dju 10246 . . . . . . . 8 (2o × 𝐴) = (𝐴𝐴)
15 xpdom1g 9135 . . . . . . . . 9 ((𝐴 ∈ V ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1611, 15sylan 579 . . . . . . . 8 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
1714, 16eqbrtrrid 5202 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → (𝐴𝐴) ≼ (𝐴 × 𝐴))
18 sdomdomtr 9176 . . . . . . 7 ((𝐴 ≺ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴))
1917, 18syldan 590 . . . . . 6 ((𝐴 ≺ (𝐴𝐴) ∧ 2o𝐴) → 𝐴 ≺ (𝐴 × 𝐴))
2019ex 412 . . . . 5 (𝐴 ≺ (𝐴𝐴) → (2o𝐴𝐴 ≺ (𝐴 × 𝐴)))
2113, 20sylbird 260 . . . 4 (𝐴 ≺ (𝐴𝐴) → (¬ 𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2221orrd 862 . . 3 (𝐴 ≺ (𝐴𝐴) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
234, 22jaoi 856 . 2 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
24 isfin5 10368 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
25 isfin6 10369 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
2623, 24, 253imtr4i 292 1 (𝐴 ∈ FinV𝐴 ∈ FinVI)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  c0 4352   class class class wbr 5166   × cxp 5698  Oncon0 6395  ωcom 7903  1oc1o 8515  2oc2o 8516  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  cdju 9967  FinVcfin5 10351  FinVIcfin6 10352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-fin5 10358  df-fin6 10359
This theorem is referenced by:  fin2so  37567
  Copyright terms: Public domain W3C validator