| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin56 | Structured version Visualization version GIF version | ||
| Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| fin56 | ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
| 2 | sdom2en01 10196 | . . . . 5 ⊢ (𝐴 ≺ 2o ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1o)) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ≺ 2o) |
| 4 | 3 | orcd 873 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 5 | onfin2 9130 | . . . . . . . 8 ⊢ ω = (On ∩ Fin) | |
| 6 | inss2 4189 | . . . . . . . 8 ⊢ (On ∩ Fin) ⊆ Fin | |
| 7 | 5, 6 | eqsstri 3982 | . . . . . . 7 ⊢ ω ⊆ Fin |
| 8 | 2onn 8560 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 9 | 7, 8 | sselii 3932 | . . . . . 6 ⊢ 2o ∈ Fin |
| 10 | relsdom 8879 | . . . . . . 7 ⊢ Rel ≺ | |
| 11 | 10 | brrelex1i 5675 | . . . . . 6 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
| 12 | fidomtri 9889 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝐴 ∈ V) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) | |
| 13 | 9, 11, 12 | sylancr 587 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o)) |
| 14 | xp2dju 10071 | . . . . . . . 8 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
| 15 | xpdom1g 8991 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 16 | 11, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 17 | 14, 16 | eqbrtrrid 5128 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) |
| 18 | sdomdomtr 9027 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴)) | |
| 19 | 17, 18 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ≺ (𝐴 ⊔ 𝐴) ∧ 2o ≼ 𝐴) → 𝐴 ≺ (𝐴 × 𝐴)) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (2o ≼ 𝐴 → 𝐴 ≺ (𝐴 × 𝐴))) |
| 21 | 13, 20 | sylbird 260 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (¬ 𝐴 ≺ 2o → 𝐴 ≺ (𝐴 × 𝐴))) |
| 22 | 21 | orrd 863 | . . 3 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 23 | 4, 22 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 24 | isfin5 10193 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
| 25 | isfin6 10194 | . 2 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) | |
| 26 | 23, 24, 25 | 3imtr4i 292 | 1 ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ∅c0 4284 class class class wbr 5092 × cxp 5617 Oncon0 6307 ωcom 7799 1oc1o 8381 2oc2o 8382 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 Fincfn 8872 ⊔ cdju 9794 FinVcfin5 10176 FinVIcfin6 10177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1st 7924 df-2nd 7925 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-fin5 10183 df-fin6 10184 |
| This theorem is referenced by: fin2so 37587 |
| Copyright terms: Public domain | W3C validator |