![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djucomen | Structured version Visualization version GIF version |
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
djucomen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8496 | . . . 4 ⊢ 1o ∈ V | |
2 | xpsnen2g 9093 | . . . 4 ⊢ ((1o ∈ V ∧ 𝐴 ∈ 𝑉) → ({1o} × 𝐴) ≈ 𝐴) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({1o} × 𝐴) ≈ 𝐴) |
4 | 0ex 5303 | . . . 4 ⊢ ∅ ∈ V | |
5 | xpsnen2g 9093 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐵) ≈ 𝐵) | |
6 | 4, 5 | mpan 688 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({∅} × 𝐵) ≈ 𝐵) |
7 | ensym 9024 | . . . 4 ⊢ (({1o} × 𝐴) ≈ 𝐴 → 𝐴 ≈ ({1o} × 𝐴)) | |
8 | ensym 9024 | . . . 4 ⊢ (({∅} × 𝐵) ≈ 𝐵 → 𝐵 ≈ ({∅} × 𝐵)) | |
9 | incom 4200 | . . . . . 6 ⊢ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴)) | |
10 | xp01disjl 8512 | . . . . . 6 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅ | |
11 | 9, 10 | eqtri 2754 | . . . . 5 ⊢ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅ |
12 | djuenun 10204 | . . . . 5 ⊢ ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) | |
13 | 11, 12 | mp3an3 1447 | . . . 4 ⊢ ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) |
14 | 7, 8, 13 | syl2an 594 | . . 3 ⊢ ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) |
15 | 3, 6, 14 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) |
16 | df-dju 9935 | . . 3 ⊢ (𝐵 ⊔ 𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴)) | |
17 | 16 | equncomi 4153 | . 2 ⊢ (𝐵 ⊔ 𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵)) |
18 | 15, 17 | breqtrrdi 5186 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3463 ∪ cun 3945 ∩ cin 3946 ∅c0 4323 {csn 4624 class class class wbr 5144 × cxp 5671 1oc1o 8479 ≈ cen 8961 ⊔ cdju 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6369 df-on 6370 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1st 7993 df-2nd 7994 df-1o 8486 df-er 8724 df-en 8965 df-dju 9935 |
This theorem is referenced by: djudom2 10217 djulepw 10226 infdju 10240 alephadd 10609 gchdomtri 10661 pwxpndom 10698 gchpwdom 10702 gchhar 10711 |
Copyright terms: Public domain | W3C validator |