| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djucomen | Structured version Visualization version GIF version | ||
| Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| djucomen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8444 | . . . 4 ⊢ 1o ∈ V | |
| 2 | xpsnen2g 9034 | . . . 4 ⊢ ((1o ∈ V ∧ 𝐴 ∈ 𝑉) → ({1o} × 𝐴) ≈ 𝐴) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({1o} × 𝐴) ≈ 𝐴) |
| 4 | 0ex 5262 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | xpsnen2g 9034 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐵 ∈ 𝑊) → ({∅} × 𝐵) ≈ 𝐵) | |
| 6 | 4, 5 | mpan 690 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({∅} × 𝐵) ≈ 𝐵) |
| 7 | ensym 8974 | . . . 4 ⊢ (({1o} × 𝐴) ≈ 𝐴 → 𝐴 ≈ ({1o} × 𝐴)) | |
| 8 | ensym 8974 | . . . 4 ⊢ (({∅} × 𝐵) ≈ 𝐵 → 𝐵 ≈ ({∅} × 𝐵)) | |
| 9 | incom 4172 | . . . . . 6 ⊢ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴)) | |
| 10 | xp01disjl 8456 | . . . . . 6 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅ | |
| 11 | 9, 10 | eqtri 2752 | . . . . 5 ⊢ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅ |
| 12 | djuenun 10124 | . . . . 5 ⊢ ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) | |
| 13 | 11, 12 | mp3an3 1452 | . . . 4 ⊢ ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) |
| 14 | 7, 8, 13 | syl2an 596 | . . 3 ⊢ ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) |
| 15 | 3, 6, 14 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵))) |
| 16 | df-dju 9854 | . . 3 ⊢ (𝐵 ⊔ 𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴)) | |
| 17 | 16 | equncomi 4123 | . 2 ⊢ (𝐵 ⊔ 𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵)) |
| 18 | 15, 17 | breqtrrdi 5149 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 {csn 4589 class class class wbr 5107 × cxp 5636 1oc1o 8427 ≈ cen 8915 ⊔ cdju 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1st 7968 df-2nd 7969 df-1o 8434 df-er 8671 df-en 8919 df-dju 9854 |
| This theorem is referenced by: djudom2 10137 djulepw 10146 infdju 10160 alephadd 10530 gchdomtri 10582 pwxpndom 10619 gchpwdom 10623 gchhar 10632 |
| Copyright terms: Public domain | W3C validator |