MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djucomen Structured version   Visualization version   GIF version

Theorem djucomen 10169
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djucomen ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem djucomen
StepHypRef Expression
1 1oex 8472 . . . 4 1o ∈ V
2 xpsnen2g 9062 . . . 4 ((1o ∈ V ∧ 𝐴𝑉) → ({1o} × 𝐴) ≈ 𝐴)
31, 2mpan 687 . . 3 (𝐴𝑉 → ({1o} × 𝐴) ≈ 𝐴)
4 0ex 5298 . . . 4 ∅ ∈ V
5 xpsnen2g 9062 . . . 4 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
64, 5mpan 687 . . 3 (𝐵𝑊 → ({∅} × 𝐵) ≈ 𝐵)
7 ensym 8996 . . . 4 (({1o} × 𝐴) ≈ 𝐴𝐴 ≈ ({1o} × 𝐴))
8 ensym 8996 . . . 4 (({∅} × 𝐵) ≈ 𝐵𝐵 ≈ ({∅} × 𝐵))
9 incom 4194 . . . . . 6 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = (({∅} × 𝐵) ∩ ({1o} × 𝐴))
10 xp01disjl 8488 . . . . . 6 (({∅} × 𝐵) ∩ ({1o} × 𝐴)) = ∅
119, 10eqtri 2752 . . . . 5 (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅
12 djuenun 10162 . . . . 5 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵) ∧ (({1o} × 𝐴) ∩ ({∅} × 𝐵)) = ∅) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
1311, 12mp3an3 1446 . . . 4 ((𝐴 ≈ ({1o} × 𝐴) ∧ 𝐵 ≈ ({∅} × 𝐵)) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
147, 8, 13syl2an 595 . . 3 ((({1o} × 𝐴) ≈ 𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
153, 6, 14syl2an 595 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (({1o} × 𝐴) ∪ ({∅} × 𝐵)))
16 df-dju 9893 . . 3 (𝐵𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴))
1716equncomi 4148 . 2 (𝐵𝐴) = (({1o} × 𝐴) ∪ ({∅} × 𝐵))
1815, 17breqtrrdi 5181 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cun 3939  cin 3940  c0 4315  {csn 4621   class class class wbr 5139   × cxp 5665  1oc1o 8455  cen 8933  cdju 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1st 7969  df-2nd 7970  df-1o 8462  df-er 8700  df-en 8937  df-dju 9893
This theorem is referenced by:  djudom2  10175  djulepw  10184  infdju  10200  alephadd  10569  gchdomtri  10621  pwxpndom  10658  gchpwdom  10662  gchhar  10671
  Copyright terms: Public domain W3C validator