Proof of Theorem ackbij1lem5
Step | Hyp | Ref
| Expression |
1 | | peano2 7737 |
. . . . . . 7
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |
2 | | pw2eng 8865 |
. . . . . . 7
⊢ (suc
𝐴 ∈ ω →
𝒫 suc 𝐴 ≈
(2o ↑m suc 𝐴)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈
(2o ↑m suc 𝐴)) |
4 | | df-suc 6272 |
. . . . . . . . . 10
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
5 | 4 | oveq2i 7286 |
. . . . . . . . 9
⊢
(2o ↑m suc 𝐴) = (2o ↑m (𝐴 ∪ {𝐴})) |
6 | | elex 3450 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → 𝐴 ∈ V) |
7 | | snex 5354 |
. . . . . . . . . . . 12
⊢ {𝐴} ∈ V |
8 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → {𝐴} ∈ V) |
9 | | 2onn 8472 |
. . . . . . . . . . . . 13
⊢
2o ∈ ω |
10 | 9 | elexi 3451 |
. . . . . . . . . . . 12
⊢
2o ∈ V |
11 | 10 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
2o ∈ V) |
12 | | nnord 7720 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → Ord 𝐴) |
13 | | orddisj 6304 |
. . . . . . . . . . . 12
⊢ (Ord
𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
15 | | mapunen 8933 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o
∈ V) ∧ (𝐴 ∩
{𝐴}) = ∅) →
(2o ↑m (𝐴 ∪ {𝐴})) ≈ ((2o
↑m 𝐴)
× (2o ↑m {𝐴}))) |
16 | 6, 8, 11, 14, 15 | syl31anc 1372 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
(2o ↑m (𝐴 ∪ {𝐴})) ≈ ((2o
↑m 𝐴)
× (2o ↑m {𝐴}))) |
17 | | ovex 7308 |
. . . . . . . . . . . 12
⊢
(2o ↑m 𝐴) ∈ V |
18 | 17 | enref 8773 |
. . . . . . . . . . 11
⊢
(2o ↑m 𝐴) ≈ (2o ↑m
𝐴) |
19 | | 2on 8311 |
. . . . . . . . . . . . 13
⊢
2o ∈ On |
20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω →
2o ∈ On) |
21 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → 𝐴 ∈
ω) |
22 | 20, 21 | mapsnend 8826 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
(2o ↑m {𝐴}) ≈ 2o) |
23 | | xpen 8927 |
. . . . . . . . . . 11
⊢
(((2o ↑m 𝐴) ≈ (2o ↑m
𝐴) ∧ (2o
↑m {𝐴})
≈ 2o) → ((2o ↑m 𝐴) × (2o
↑m {𝐴}))
≈ ((2o ↑m 𝐴) × 2o)) |
24 | 18, 22, 23 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
((2o ↑m 𝐴) × (2o ↑m
{𝐴})) ≈
((2o ↑m 𝐴) × 2o)) |
25 | | entr 8792 |
. . . . . . . . . 10
⊢
(((2o ↑m (𝐴 ∪ {𝐴})) ≈ ((2o
↑m 𝐴)
× (2o ↑m {𝐴})) ∧ ((2o ↑m
𝐴) × (2o
↑m {𝐴}))
≈ ((2o ↑m 𝐴) × 2o)) →
(2o ↑m (𝐴 ∪ {𝐴})) ≈ ((2o
↑m 𝐴)
× 2o)) |
26 | 16, 24, 25 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω →
(2o ↑m (𝐴 ∪ {𝐴})) ≈ ((2o
↑m 𝐴)
× 2o)) |
27 | 5, 26 | eqbrtrid 5109 |
. . . . . . . 8
⊢ (𝐴 ∈ ω →
(2o ↑m suc 𝐴) ≈ ((2o ↑m
𝐴) ×
2o)) |
28 | 17, 10 | xpcomen 8850 |
. . . . . . . 8
⊢
((2o ↑m 𝐴) × 2o) ≈
(2o × (2o ↑m 𝐴)) |
29 | | entr 8792 |
. . . . . . . 8
⊢
(((2o ↑m suc 𝐴) ≈ ((2o ↑m
𝐴) × 2o)
∧ ((2o ↑m 𝐴) × 2o) ≈
(2o × (2o ↑m 𝐴))) → (2o ↑m
suc 𝐴) ≈
(2o × (2o ↑m 𝐴))) |
30 | 27, 28, 29 | sylancl 586 |
. . . . . . 7
⊢ (𝐴 ∈ ω →
(2o ↑m suc 𝐴) ≈ (2o ×
(2o ↑m 𝐴))) |
31 | 10 | enref 8773 |
. . . . . . . . 9
⊢
2o ≈ 2o |
32 | | pw2eng 8865 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ≈ (2o
↑m 𝐴)) |
33 | | xpen 8927 |
. . . . . . . . 9
⊢
((2o ≈ 2o ∧ 𝒫 𝐴 ≈ (2o ↑m
𝐴)) → (2o
× 𝒫 𝐴)
≈ (2o × (2o ↑m 𝐴))) |
34 | 31, 32, 33 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ ω →
(2o × 𝒫 𝐴) ≈ (2o ×
(2o ↑m 𝐴))) |
35 | 34 | ensymd 8791 |
. . . . . . 7
⊢ (𝐴 ∈ ω →
(2o × (2o ↑m 𝐴)) ≈ (2o × 𝒫
𝐴)) |
36 | | entr 8792 |
. . . . . . 7
⊢
(((2o ↑m suc 𝐴) ≈ (2o ×
(2o ↑m 𝐴)) ∧ (2o ×
(2o ↑m 𝐴)) ≈ (2o × 𝒫
𝐴)) → (2o
↑m suc 𝐴)
≈ (2o × 𝒫 𝐴)) |
37 | 30, 35, 36 | syl2anc 584 |
. . . . . 6
⊢ (𝐴 ∈ ω →
(2o ↑m suc 𝐴) ≈ (2o × 𝒫
𝐴)) |
38 | | entr 8792 |
. . . . . 6
⊢
((𝒫 suc 𝐴
≈ (2o ↑m suc 𝐴) ∧ (2o ↑m
suc 𝐴) ≈
(2o × 𝒫 𝐴)) → 𝒫 suc 𝐴 ≈ (2o × 𝒫
𝐴)) |
39 | 3, 37, 38 | syl2anc 584 |
. . . . 5
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈
(2o × 𝒫 𝐴)) |
40 | | xp2dju 9932 |
. . . . 5
⊢
(2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) |
41 | 39, 40 | breqtrdi 5115 |
. . . 4
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈ (𝒫
𝐴 ⊔ 𝒫 𝐴)) |
42 | | nnfi 8950 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
43 | | pwfi 8961 |
. . . . . . . 8
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Fin) |
44 | 42, 43 | sylib 217 |
. . . . . . 7
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ∈
Fin) |
45 | | ficardid 9720 |
. . . . . . 7
⊢
(𝒫 𝐴 ∈
Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴) |
46 | 44, 45 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴)
≈ 𝒫 𝐴) |
47 | | djuen 9925 |
. . . . . 6
⊢
(((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫
𝐴) ⊔
(card‘𝒫 𝐴))
≈ (𝒫 𝐴
⊔ 𝒫 𝐴)) |
48 | 46, 46, 47 | syl2anc 584 |
. . . . 5
⊢ (𝐴 ∈ ω →
((card‘𝒫 𝐴)
⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴)) |
49 | 48 | ensymd 8791 |
. . . 4
⊢ (𝐴 ∈ ω →
(𝒫 𝐴 ⊔
𝒫 𝐴) ≈
((card‘𝒫 𝐴)
⊔ (card‘𝒫 𝐴))) |
50 | | entr 8792 |
. . . 4
⊢
((𝒫 suc 𝐴
≈ (𝒫 𝐴
⊔ 𝒫 𝐴) ∧
(𝒫 𝐴 ⊔
𝒫 𝐴) ≈
((card‘𝒫 𝐴)
⊔ (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫
𝐴))) |
51 | 41, 49, 50 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈
((card‘𝒫 𝐴)
⊔ (card‘𝒫 𝐴))) |
52 | | carden2b 9725 |
. . 3
⊢
(𝒫 suc 𝐴
≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) → (card‘𝒫
suc 𝐴) =
(card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))) |
53 | 51, 52 | syl 17 |
. 2
⊢ (𝐴 ∈ ω →
(card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫
𝐴)))) |
54 | | ficardom 9719 |
. . . 4
⊢
(𝒫 𝐴 ∈
Fin → (card‘𝒫 𝐴) ∈ ω) |
55 | 44, 54 | syl 17 |
. . 3
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴)
∈ ω) |
56 | | nnadju 9953 |
. . 3
⊢
(((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫
𝐴) ∈ ω) →
(card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫
𝐴) +o
(card‘𝒫 𝐴))) |
57 | 55, 55, 56 | syl2anc 584 |
. 2
⊢ (𝐴 ∈ ω →
(card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫
𝐴) +o
(card‘𝒫 𝐴))) |
58 | 53, 57 | eqtrd 2778 |
1
⊢ (𝐴 ∈ ω →
(card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴))) |