Proof of Theorem ackbij1lem5
Step | Hyp | Ref
| Expression |
1 | | peano2 7352 |
. . . . . . 7
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |
2 | | pw2eng 8341 |
. . . . . . 7
⊢ (suc
𝐴 ∈ ω →
𝒫 suc 𝐴 ≈
(2o ↑𝑚 suc 𝐴)) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈
(2o ↑𝑚 suc 𝐴)) |
4 | | df-suc 5973 |
. . . . . . . . 9
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
5 | 4 | oveq2i 6921 |
. . . . . . . 8
⊢
(2o ↑𝑚 suc 𝐴) = (2o
↑𝑚 (𝐴 ∪ {𝐴})) |
6 | | elex 3429 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → 𝐴 ∈ V) |
7 | | snex 5131 |
. . . . . . . . . . 11
⊢ {𝐴} ∈ V |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → {𝐴} ∈ V) |
9 | | 2onn 7992 |
. . . . . . . . . . . 12
⊢
2o ∈ ω |
10 | 9 | elexi 3430 |
. . . . . . . . . . 11
⊢
2o ∈ V |
11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
2o ∈ V) |
12 | | nnord 7339 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → Ord 𝐴) |
13 | | orddisj 6005 |
. . . . . . . . . . 11
⊢ (Ord
𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
14 | 12, 13 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
15 | | mapunen 8404 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o
∈ V) ∧ (𝐴 ∩
{𝐴}) = ∅) →
(2o ↑𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o
↑𝑚 𝐴) × (2o
↑𝑚 {𝐴}))) |
16 | 6, 8, 11, 14, 15 | syl31anc 1496 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω →
(2o ↑𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o
↑𝑚 𝐴) × (2o
↑𝑚 {𝐴}))) |
17 | | ovex 6942 |
. . . . . . . . . . . 12
⊢
(2o ↑𝑚 𝐴) ∈ V |
18 | 17 | enref 8261 |
. . . . . . . . . . 11
⊢
(2o ↑𝑚 𝐴) ≈ (2o
↑𝑚 𝐴) |
19 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
(2o ↑𝑚 𝐴) ≈ (2o
↑𝑚 𝐴)) |
20 | | 2on 7840 |
. . . . . . . . . . . 12
⊢
2o ∈ On |
21 | 20 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
2o ∈ On) |
22 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → 𝐴 ∈
ω) |
23 | 21, 22 | mapsnend 8307 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
(2o ↑𝑚 {𝐴}) ≈ 2o) |
24 | | xpen 8398 |
. . . . . . . . . 10
⊢
(((2o ↑𝑚 𝐴) ≈ (2o
↑𝑚 𝐴) ∧ (2o
↑𝑚 {𝐴}) ≈ 2o) →
((2o ↑𝑚 𝐴) × (2o
↑𝑚 {𝐴})) ≈ ((2o
↑𝑚 𝐴) × 2o)) |
25 | 19, 23, 24 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω →
((2o ↑𝑚 𝐴) × (2o
↑𝑚 {𝐴})) ≈ ((2o
↑𝑚 𝐴) × 2o)) |
26 | | entr 8280 |
. . . . . . . . 9
⊢
(((2o ↑𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o
↑𝑚 𝐴) × (2o
↑𝑚 {𝐴})) ∧ ((2o
↑𝑚 𝐴) × (2o
↑𝑚 {𝐴})) ≈ ((2o
↑𝑚 𝐴) × 2o)) →
(2o ↑𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o
↑𝑚 𝐴) × 2o)) |
27 | 16, 25, 26 | syl2anc 579 |
. . . . . . . 8
⊢ (𝐴 ∈ ω →
(2o ↑𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o
↑𝑚 𝐴) × 2o)) |
28 | 5, 27 | syl5eqbr 4910 |
. . . . . . 7
⊢ (𝐴 ∈ ω →
(2o ↑𝑚 suc 𝐴) ≈ ((2o
↑𝑚 𝐴) × 2o)) |
29 | | pw2eng 8341 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ≈ (2o
↑𝑚 𝐴)) |
30 | 10 | enref 8261 |
. . . . . . . . . 10
⊢
2o ≈ 2o |
31 | 30 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω →
2o ≈ 2o) |
32 | | xpen 8398 |
. . . . . . . . 9
⊢
((𝒫 𝐴
≈ (2o ↑𝑚 𝐴) ∧ 2o ≈ 2o)
→ (𝒫 𝐴 ×
2o) ≈ ((2o ↑𝑚 𝐴) ×
2o)) |
33 | 29, 31, 32 | syl2anc 579 |
. . . . . . . 8
⊢ (𝐴 ∈ ω →
(𝒫 𝐴 ×
2o) ≈ ((2o ↑𝑚 𝐴) ×
2o)) |
34 | 33 | ensymd 8279 |
. . . . . . 7
⊢ (𝐴 ∈ ω →
((2o ↑𝑚 𝐴) × 2o) ≈ (𝒫
𝐴 ×
2o)) |
35 | | entr 8280 |
. . . . . . 7
⊢
(((2o ↑𝑚 suc 𝐴) ≈ ((2o
↑𝑚 𝐴) × 2o) ∧
((2o ↑𝑚 𝐴) × 2o) ≈ (𝒫
𝐴 × 2o))
→ (2o ↑𝑚 suc 𝐴) ≈ (𝒫 𝐴 × 2o)) |
36 | 28, 34, 35 | syl2anc 579 |
. . . . . 6
⊢ (𝐴 ∈ ω →
(2o ↑𝑚 suc 𝐴) ≈ (𝒫 𝐴 × 2o)) |
37 | | entr 8280 |
. . . . . 6
⊢
((𝒫 suc 𝐴
≈ (2o ↑𝑚 suc 𝐴) ∧ (2o
↑𝑚 suc 𝐴) ≈ (𝒫 𝐴 × 2o)) → 𝒫
suc 𝐴 ≈ (𝒫
𝐴 ×
2o)) |
38 | 3, 36, 37 | syl2anc 579 |
. . . . 5
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈ (𝒫
𝐴 ×
2o)) |
39 | | pwexg 5080 |
. . . . . 6
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ∈
V) |
40 | | xp2cda 9324 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
V → (𝒫 𝐴
× 2o) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
41 | 39, 40 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ω →
(𝒫 𝐴 ×
2o) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
42 | 38, 41 | breqtrd 4901 |
. . . 4
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈ (𝒫
𝐴 +𝑐
𝒫 𝐴)) |
43 | | nnfi 8428 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
44 | | pwfi 8536 |
. . . . . . . 8
⊢ (𝐴 ∈ Fin ↔ 𝒫
𝐴 ∈
Fin) |
45 | 43, 44 | sylib 210 |
. . . . . . 7
⊢ (𝐴 ∈ ω → 𝒫
𝐴 ∈
Fin) |
46 | | ficardid 9108 |
. . . . . . 7
⊢
(𝒫 𝐴 ∈
Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴)
≈ 𝒫 𝐴) |
48 | | cdaen 9317 |
. . . . . 6
⊢
(((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫
𝐴) +𝑐
(card‘𝒫 𝐴))
≈ (𝒫 𝐴
+𝑐 𝒫 𝐴)) |
49 | 47, 47, 48 | syl2anc 579 |
. . . . 5
⊢ (𝐴 ∈ ω →
((card‘𝒫 𝐴)
+𝑐 (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
50 | 49 | ensymd 8279 |
. . . 4
⊢ (𝐴 ∈ ω →
(𝒫 𝐴
+𝑐 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴))) |
51 | | entr 8280 |
. . . 4
⊢
((𝒫 suc 𝐴
≈ (𝒫 𝐴
+𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ ((card‘𝒫
𝐴) +𝑐
(card‘𝒫 𝐴)))
→ 𝒫 suc 𝐴
≈ ((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴))) |
52 | 42, 50, 51 | syl2anc 579 |
. . 3
⊢ (𝐴 ∈ ω → 𝒫
suc 𝐴 ≈
((card‘𝒫 𝐴)
+𝑐 (card‘𝒫 𝐴))) |
53 | | carden2b 9113 |
. . 3
⊢
(𝒫 suc 𝐴
≈ ((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴))
→ (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴)))) |
54 | 52, 53 | syl 17 |
. 2
⊢ (𝐴 ∈ ω →
(card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴)))) |
55 | | ficardom 9107 |
. . . 4
⊢
(𝒫 𝐴 ∈
Fin → (card‘𝒫 𝐴) ∈ ω) |
56 | 45, 55 | syl 17 |
. . 3
⊢ (𝐴 ∈ ω →
(card‘𝒫 𝐴)
∈ ω) |
57 | | nnacda 9345 |
. . 3
⊢
(((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫
𝐴) ∈ ω) →
(card‘((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴)))
= ((card‘𝒫 𝐴)
+o (card‘𝒫 𝐴))) |
58 | 56, 56, 57 | syl2anc 579 |
. 2
⊢ (𝐴 ∈ ω →
(card‘((card‘𝒫 𝐴) +𝑐
(card‘𝒫 𝐴)))
= ((card‘𝒫 𝐴)
+o (card‘𝒫 𝐴))) |
59 | 54, 58 | eqtrd 2861 |
1
⊢ (𝐴 ∈ ω →
(card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴))) |