MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 10292
Description: Lemma for ackbij2 10311. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
StepHypRef Expression
1 peano2 7929 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 pw2eng 9144 . . . . . . 7 (suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
4 df-suc 6401 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
54oveq2i 7459 . . . . . . . . 9 (2om suc 𝐴) = (2om (𝐴 ∪ {𝐴}))
6 elex 3509 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴 ∈ V)
7 snex 5451 . . . . . . . . . . . 12 {𝐴} ∈ V
87a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → {𝐴} ∈ V)
9 2onn 8698 . . . . . . . . . . . . 13 2o ∈ ω
109elexi 3511 . . . . . . . . . . . 12 2o ∈ V
1110a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → 2o ∈ V)
12 nnord 7911 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
13 orddisj 6433 . . . . . . . . . . . 12 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1412, 13syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
15 mapunen 9212 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o ∈ V) ∧ (𝐴 ∩ {𝐴}) = ∅) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
166, 8, 11, 14, 15syl31anc 1373 . . . . . . . . . 10 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
17 ovex 7481 . . . . . . . . . . . 12 (2om 𝐴) ∈ V
1817enref 9045 . . . . . . . . . . 11 (2om 𝐴) ≈ (2om 𝐴)
19 2on 8536 . . . . . . . . . . . . 13 2o ∈ On
2019a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ω → 2o ∈ On)
21 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ ω)
2220, 21mapsnend 9101 . . . . . . . . . . 11 (𝐴 ∈ ω → (2om {𝐴}) ≈ 2o)
23 xpen 9206 . . . . . . . . . . 11 (((2om 𝐴) ≈ (2om 𝐴) ∧ (2om {𝐴}) ≈ 2o) → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
2418, 22, 23sylancr 586 . . . . . . . . . 10 (𝐴 ∈ ω → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
25 entr 9066 . . . . . . . . . 10 (((2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})) ∧ ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o)) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
2616, 24, 25syl2anc 583 . . . . . . . . 9 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
275, 26eqbrtrid 5201 . . . . . . . 8 (𝐴 ∈ ω → (2om suc 𝐴) ≈ ((2om 𝐴) × 2o))
2817, 10xpcomen 9129 . . . . . . . 8 ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))
29 entr 9066 . . . . . . . 8 (((2om suc 𝐴) ≈ ((2om 𝐴) × 2o) ∧ ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))) → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3027, 28, 29sylancl 585 . . . . . . 7 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3110enref 9045 . . . . . . . . 9 2o ≈ 2o
32 pw2eng 9144 . . . . . . . . 9 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (2om 𝐴))
33 xpen 9206 . . . . . . . . 9 ((2o ≈ 2o ∧ 𝒫 𝐴 ≈ (2om 𝐴)) → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3431, 32, 33sylancr 586 . . . . . . . 8 (𝐴 ∈ ω → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3534ensymd 9065 . . . . . . 7 (𝐴 ∈ ω → (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴))
36 entr 9066 . . . . . . 7 (((2om suc 𝐴) ≈ (2o × (2om 𝐴)) ∧ (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴)) → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
3730, 35, 36syl2anc 583 . . . . . 6 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
38 entr 9066 . . . . . 6 ((𝒫 suc 𝐴 ≈ (2om suc 𝐴) ∧ (2om suc 𝐴) ≈ (2o × 𝒫 𝐴)) → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
393, 37, 38syl2anc 583 . . . . 5 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
40 xp2dju 10246 . . . . 5 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
4139, 40breqtrdi 5207 . . . 4 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
42 nnfi 9233 . . . . . . . 8 (𝐴 ∈ ω → 𝐴 ∈ Fin)
43 pwfi 9385 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
4442, 43sylib 218 . . . . . . 7 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
45 ficardid 10031 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
4644, 45syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
47 djuen 10239 . . . . . 6 (((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4846, 46, 47syl2anc 583 . . . . 5 (𝐴 ∈ ω → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4948ensymd 9065 . . . 4 (𝐴 ∈ ω → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
50 entr 9066 . . . 4 ((𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
5141, 49, 50syl2anc 583 . . 3 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
52 carden2b 10036 . . 3 (𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
5351, 52syl 17 . 2 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
54 ficardom 10030 . . . 4 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
5544, 54syl 17 . . 3 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
56 nnadju 10267 . . 3 (((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫 𝐴) ∈ ω) → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5755, 55, 56syl2anc 583 . 2 (𝐴 ∈ ω → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5853, 57eqtrd 2780 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166   × cxp 5698  Ord word 6394  Oncon0 6395  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903  2oc2o 8516   +o coa 8519  m cmap 8884  cen 9000  Fincfn 9003  cdju 9967  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008
This theorem is referenced by:  ackbij1lem14  10301
  Copyright terms: Public domain W3C validator