MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 9368
Description: Lemma for ackbij2 9387. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
StepHypRef Expression
1 peano2 7352 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 pw2eng 8341 . . . . . . 7 (suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o𝑚 suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o𝑚 suc 𝐴))
4 df-suc 5973 . . . . . . . . 9 suc 𝐴 = (𝐴 ∪ {𝐴})
54oveq2i 6921 . . . . . . . 8 (2o𝑚 suc 𝐴) = (2o𝑚 (𝐴 ∪ {𝐴}))
6 elex 3429 . . . . . . . . . 10 (𝐴 ∈ ω → 𝐴 ∈ V)
7 snex 5131 . . . . . . . . . . 11 {𝐴} ∈ V
87a1i 11 . . . . . . . . . 10 (𝐴 ∈ ω → {𝐴} ∈ V)
9 2onn 7992 . . . . . . . . . . . 12 2o ∈ ω
109elexi 3430 . . . . . . . . . . 11 2o ∈ V
1110a1i 11 . . . . . . . . . 10 (𝐴 ∈ ω → 2o ∈ V)
12 nnord 7339 . . . . . . . . . . 11 (𝐴 ∈ ω → Ord 𝐴)
13 orddisj 6005 . . . . . . . . . . 11 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1412, 13syl 17 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
15 mapunen 8404 . . . . . . . . . 10 (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o ∈ V) ∧ (𝐴 ∩ {𝐴}) = ∅) → (2o𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o𝑚 𝐴) × (2o𝑚 {𝐴})))
166, 8, 11, 14, 15syl31anc 1496 . . . . . . . . 9 (𝐴 ∈ ω → (2o𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o𝑚 𝐴) × (2o𝑚 {𝐴})))
17 ovex 6942 . . . . . . . . . . . 12 (2o𝑚 𝐴) ∈ V
1817enref 8261 . . . . . . . . . . 11 (2o𝑚 𝐴) ≈ (2o𝑚 𝐴)
1918a1i 11 . . . . . . . . . 10 (𝐴 ∈ ω → (2o𝑚 𝐴) ≈ (2o𝑚 𝐴))
20 2on 7840 . . . . . . . . . . . 12 2o ∈ On
2120a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → 2o ∈ On)
22 id 22 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴 ∈ ω)
2321, 22mapsnend 8307 . . . . . . . . . 10 (𝐴 ∈ ω → (2o𝑚 {𝐴}) ≈ 2o)
24 xpen 8398 . . . . . . . . . 10 (((2o𝑚 𝐴) ≈ (2o𝑚 𝐴) ∧ (2o𝑚 {𝐴}) ≈ 2o) → ((2o𝑚 𝐴) × (2o𝑚 {𝐴})) ≈ ((2o𝑚 𝐴) × 2o))
2519, 23, 24syl2anc 579 . . . . . . . . 9 (𝐴 ∈ ω → ((2o𝑚 𝐴) × (2o𝑚 {𝐴})) ≈ ((2o𝑚 𝐴) × 2o))
26 entr 8280 . . . . . . . . 9 (((2o𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o𝑚 𝐴) × (2o𝑚 {𝐴})) ∧ ((2o𝑚 𝐴) × (2o𝑚 {𝐴})) ≈ ((2o𝑚 𝐴) × 2o)) → (2o𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o𝑚 𝐴) × 2o))
2716, 25, 26syl2anc 579 . . . . . . . 8 (𝐴 ∈ ω → (2o𝑚 (𝐴 ∪ {𝐴})) ≈ ((2o𝑚 𝐴) × 2o))
285, 27syl5eqbr 4910 . . . . . . 7 (𝐴 ∈ ω → (2o𝑚 suc 𝐴) ≈ ((2o𝑚 𝐴) × 2o))
29 pw2eng 8341 . . . . . . . . 9 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (2o𝑚 𝐴))
3010enref 8261 . . . . . . . . . 10 2o ≈ 2o
3130a1i 11 . . . . . . . . 9 (𝐴 ∈ ω → 2o ≈ 2o)
32 xpen 8398 . . . . . . . . 9 ((𝒫 𝐴 ≈ (2o𝑚 𝐴) ∧ 2o ≈ 2o) → (𝒫 𝐴 × 2o) ≈ ((2o𝑚 𝐴) × 2o))
3329, 31, 32syl2anc 579 . . . . . . . 8 (𝐴 ∈ ω → (𝒫 𝐴 × 2o) ≈ ((2o𝑚 𝐴) × 2o))
3433ensymd 8279 . . . . . . 7 (𝐴 ∈ ω → ((2o𝑚 𝐴) × 2o) ≈ (𝒫 𝐴 × 2o))
35 entr 8280 . . . . . . 7 (((2o𝑚 suc 𝐴) ≈ ((2o𝑚 𝐴) × 2o) ∧ ((2o𝑚 𝐴) × 2o) ≈ (𝒫 𝐴 × 2o)) → (2o𝑚 suc 𝐴) ≈ (𝒫 𝐴 × 2o))
3628, 34, 35syl2anc 579 . . . . . 6 (𝐴 ∈ ω → (2o𝑚 suc 𝐴) ≈ (𝒫 𝐴 × 2o))
37 entr 8280 . . . . . 6 ((𝒫 suc 𝐴 ≈ (2o𝑚 suc 𝐴) ∧ (2o𝑚 suc 𝐴) ≈ (𝒫 𝐴 × 2o)) → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 × 2o))
383, 36, 37syl2anc 579 . . . . 5 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 × 2o))
39 pwexg 5080 . . . . . 6 (𝐴 ∈ ω → 𝒫 𝐴 ∈ V)
40 xp2cda 9324 . . . . . 6 (𝒫 𝐴 ∈ V → (𝒫 𝐴 × 2o) = (𝒫 𝐴 +𝑐 𝒫 𝐴))
4139, 40syl 17 . . . . 5 (𝐴 ∈ ω → (𝒫 𝐴 × 2o) = (𝒫 𝐴 +𝑐 𝒫 𝐴))
4238, 41breqtrd 4901 . . . 4 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴))
43 nnfi 8428 . . . . . . . 8 (𝐴 ∈ ω → 𝐴 ∈ Fin)
44 pwfi 8536 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
4543, 44sylib 210 . . . . . . 7 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
46 ficardid 9108 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
4745, 46syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
48 cdaen 9317 . . . . . 6 (((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴))
4947, 47, 48syl2anc 579 . . . . 5 (𝐴 ∈ ω → ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴))
5049ensymd 8279 . . . 4 (𝐴 ∈ ω → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴)))
51 entr 8280 . . . 4 ((𝒫 suc 𝐴 ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴) ∧ (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴)))
5242, 50, 51syl2anc 579 . . 3 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴)))
53 carden2b 9113 . . 3 (𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴)) → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴))))
5452, 53syl 17 . 2 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴))))
55 ficardom 9107 . . . 4 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
5645, 55syl 17 . . 3 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
57 nnacda 9345 . . 3 (((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫 𝐴) ∈ ω) → (card‘((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5856, 56, 57syl2anc 579 . 2 (𝐴 ∈ ω → (card‘((card‘𝒫 𝐴) +𝑐 (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5954, 58eqtrd 2861 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  Vcvv 3414  cun 3796  cin 3797  c0 4146  𝒫 cpw 4380  {csn 4399   class class class wbr 4875   × cxp 5344  Ord word 5966  Oncon0 5967  suc csuc 5969  cfv 6127  (class class class)co 6910  ωcom 7331  2oc2o 7825   +o coa 7828  𝑚 cmap 8127  cen 8225  Fincfn 8228  cardccrd 9081   +𝑐 ccda 9311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312
This theorem is referenced by:  ackbij1lem14  9377
  Copyright terms: Public domain W3C validator