MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 9717
Description: Lemma for ackbij2 9736. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
StepHypRef Expression
1 peano2 7615 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 pw2eng 8665 . . . . . . 7 (suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
4 df-suc 6172 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
54oveq2i 7175 . . . . . . . . 9 (2om suc 𝐴) = (2om (𝐴 ∪ {𝐴}))
6 elex 3415 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴 ∈ V)
7 snex 5295 . . . . . . . . . . . 12 {𝐴} ∈ V
87a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → {𝐴} ∈ V)
9 2onn 8290 . . . . . . . . . . . . 13 2o ∈ ω
109elexi 3416 . . . . . . . . . . . 12 2o ∈ V
1110a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → 2o ∈ V)
12 nnord 7601 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
13 orddisj 6204 . . . . . . . . . . . 12 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1412, 13syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
15 mapunen 8729 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o ∈ V) ∧ (𝐴 ∩ {𝐴}) = ∅) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
166, 8, 11, 14, 15syl31anc 1374 . . . . . . . . . 10 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
17 ovex 7197 . . . . . . . . . . . 12 (2om 𝐴) ∈ V
1817enref 8581 . . . . . . . . . . 11 (2om 𝐴) ≈ (2om 𝐴)
19 2on 8132 . . . . . . . . . . . . 13 2o ∈ On
2019a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ω → 2o ∈ On)
21 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ ω)
2220, 21mapsnend 8628 . . . . . . . . . . 11 (𝐴 ∈ ω → (2om {𝐴}) ≈ 2o)
23 xpen 8723 . . . . . . . . . . 11 (((2om 𝐴) ≈ (2om 𝐴) ∧ (2om {𝐴}) ≈ 2o) → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
2418, 22, 23sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ω → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
25 entr 8600 . . . . . . . . . 10 (((2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})) ∧ ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o)) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
2616, 24, 25syl2anc 587 . . . . . . . . 9 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
275, 26eqbrtrid 5062 . . . . . . . 8 (𝐴 ∈ ω → (2om suc 𝐴) ≈ ((2om 𝐴) × 2o))
2817, 10xpcomen 8650 . . . . . . . 8 ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))
29 entr 8600 . . . . . . . 8 (((2om suc 𝐴) ≈ ((2om 𝐴) × 2o) ∧ ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))) → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3027, 28, 29sylancl 589 . . . . . . 7 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3110enref 8581 . . . . . . . . 9 2o ≈ 2o
32 pw2eng 8665 . . . . . . . . 9 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (2om 𝐴))
33 xpen 8723 . . . . . . . . 9 ((2o ≈ 2o ∧ 𝒫 𝐴 ≈ (2om 𝐴)) → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3431, 32, 33sylancr 590 . . . . . . . 8 (𝐴 ∈ ω → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3534ensymd 8599 . . . . . . 7 (𝐴 ∈ ω → (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴))
36 entr 8600 . . . . . . 7 (((2om suc 𝐴) ≈ (2o × (2om 𝐴)) ∧ (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴)) → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
3730, 35, 36syl2anc 587 . . . . . 6 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
38 entr 8600 . . . . . 6 ((𝒫 suc 𝐴 ≈ (2om suc 𝐴) ∧ (2om suc 𝐴) ≈ (2o × 𝒫 𝐴)) → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
393, 37, 38syl2anc 587 . . . . 5 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
40 xp2dju 9669 . . . . 5 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
4139, 40breqtrdi 5068 . . . 4 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
42 nnfi 8759 . . . . . . . 8 (𝐴 ∈ ω → 𝐴 ∈ Fin)
43 pwfi 8769 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
4442, 43sylib 221 . . . . . . 7 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
45 ficardid 9457 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
4644, 45syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
47 djuen 9662 . . . . . 6 (((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4846, 46, 47syl2anc 587 . . . . 5 (𝐴 ∈ ω → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4948ensymd 8599 . . . 4 (𝐴 ∈ ω → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
50 entr 8600 . . . 4 ((𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
5141, 49, 50syl2anc 587 . . 3 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
52 carden2b 9462 . . 3 (𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
5351, 52syl 17 . 2 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
54 ficardom 9456 . . . 4 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
5544, 54syl 17 . . 3 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
56 nnadju 9690 . . 3 (((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫 𝐴) ∈ ω) → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5755, 55, 56syl2anc 587 . 2 (𝐴 ∈ ω → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5853, 57eqtrd 2773 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  Vcvv 3397  cun 3839  cin 3840  c0 4209  𝒫 cpw 4485  {csn 4513   class class class wbr 5027   × cxp 5517  Ord word 6165  Oncon0 6166  suc csuc 6168  cfv 6333  (class class class)co 7164  ωcom 7593  2oc2o 8118   +o coa 8121  m cmap 8430  cen 8545  Fincfn 8548  cdju 9393  cardccrd 9430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-dju 9396  df-card 9434
This theorem is referenced by:  ackbij1lem14  9726
  Copyright terms: Public domain W3C validator