MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 10261
Description: Lemma for ackbij2 10280. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
StepHypRef Expression
1 peano2 7913 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 pw2eng 9117 . . . . . . 7 (suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
4 df-suc 6392 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
54oveq2i 7442 . . . . . . . . 9 (2om suc 𝐴) = (2om (𝐴 ∪ {𝐴}))
6 elex 3499 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴 ∈ V)
7 snex 5442 . . . . . . . . . . . 12 {𝐴} ∈ V
87a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → {𝐴} ∈ V)
9 2onn 8679 . . . . . . . . . . . . 13 2o ∈ ω
109elexi 3501 . . . . . . . . . . . 12 2o ∈ V
1110a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → 2o ∈ V)
12 nnord 7895 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
13 orddisj 6424 . . . . . . . . . . . 12 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1412, 13syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
15 mapunen 9185 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o ∈ V) ∧ (𝐴 ∩ {𝐴}) = ∅) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
166, 8, 11, 14, 15syl31anc 1372 . . . . . . . . . 10 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
17 ovex 7464 . . . . . . . . . . . 12 (2om 𝐴) ∈ V
1817enref 9024 . . . . . . . . . . 11 (2om 𝐴) ≈ (2om 𝐴)
19 2on 8519 . . . . . . . . . . . . 13 2o ∈ On
2019a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ω → 2o ∈ On)
21 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ ω)
2220, 21mapsnend 9075 . . . . . . . . . . 11 (𝐴 ∈ ω → (2om {𝐴}) ≈ 2o)
23 xpen 9179 . . . . . . . . . . 11 (((2om 𝐴) ≈ (2om 𝐴) ∧ (2om {𝐴}) ≈ 2o) → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
2418, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ω → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
25 entr 9045 . . . . . . . . . 10 (((2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})) ∧ ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o)) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
2616, 24, 25syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
275, 26eqbrtrid 5183 . . . . . . . 8 (𝐴 ∈ ω → (2om suc 𝐴) ≈ ((2om 𝐴) × 2o))
2817, 10xpcomen 9102 . . . . . . . 8 ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))
29 entr 9045 . . . . . . . 8 (((2om suc 𝐴) ≈ ((2om 𝐴) × 2o) ∧ ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))) → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3027, 28, 29sylancl 586 . . . . . . 7 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3110enref 9024 . . . . . . . . 9 2o ≈ 2o
32 pw2eng 9117 . . . . . . . . 9 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (2om 𝐴))
33 xpen 9179 . . . . . . . . 9 ((2o ≈ 2o ∧ 𝒫 𝐴 ≈ (2om 𝐴)) → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3431, 32, 33sylancr 587 . . . . . . . 8 (𝐴 ∈ ω → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3534ensymd 9044 . . . . . . 7 (𝐴 ∈ ω → (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴))
36 entr 9045 . . . . . . 7 (((2om suc 𝐴) ≈ (2o × (2om 𝐴)) ∧ (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴)) → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
3730, 35, 36syl2anc 584 . . . . . 6 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
38 entr 9045 . . . . . 6 ((𝒫 suc 𝐴 ≈ (2om suc 𝐴) ∧ (2om suc 𝐴) ≈ (2o × 𝒫 𝐴)) → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
393, 37, 38syl2anc 584 . . . . 5 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
40 xp2dju 10215 . . . . 5 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
4139, 40breqtrdi 5189 . . . 4 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
42 nnfi 9206 . . . . . . . 8 (𝐴 ∈ ω → 𝐴 ∈ Fin)
43 pwfi 9355 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
4442, 43sylib 218 . . . . . . 7 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
45 ficardid 10000 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
4644, 45syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
47 djuen 10208 . . . . . 6 (((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4846, 46, 47syl2anc 584 . . . . 5 (𝐴 ∈ ω → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4948ensymd 9044 . . . 4 (𝐴 ∈ ω → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
50 entr 9045 . . . 4 ((𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
5141, 49, 50syl2anc 584 . . 3 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
52 carden2b 10005 . . 3 (𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
5351, 52syl 17 . 2 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
54 ficardom 9999 . . . 4 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
5544, 54syl 17 . . 3 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
56 nnadju 10236 . . 3 (((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫 𝐴) ∈ ω) → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5755, 55, 56syl2anc 584 . 2 (𝐴 ∈ ω → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5853, 57eqtrd 2775 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  cin 3962  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148   × cxp 5687  Ord word 6385  Oncon0 6386  suc csuc 6388  cfv 6563  (class class class)co 7431  ωcom 7887  2oc2o 8499   +o coa 8502  m cmap 8865  cen 8981  Fincfn 8984  cdju 9936  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977
This theorem is referenced by:  ackbij1lem14  10270
  Copyright terms: Public domain W3C validator