MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 10176
Description: Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
StepHypRef Expression
1 peano2 7866 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 pw2eng 9047 . . . . . . 7 (suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
4 df-suc 6338 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
54oveq2i 7398 . . . . . . . . 9 (2om suc 𝐴) = (2om (𝐴 ∪ {𝐴}))
6 elex 3468 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴 ∈ V)
7 snex 5391 . . . . . . . . . . . 12 {𝐴} ∈ V
87a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → {𝐴} ∈ V)
9 2onn 8606 . . . . . . . . . . . . 13 2o ∈ ω
109elexi 3470 . . . . . . . . . . . 12 2o ∈ V
1110a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → 2o ∈ V)
12 nnord 7850 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
13 orddisj 6370 . . . . . . . . . . . 12 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1412, 13syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
15 mapunen 9110 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o ∈ V) ∧ (𝐴 ∩ {𝐴}) = ∅) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
166, 8, 11, 14, 15syl31anc 1375 . . . . . . . . . 10 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
17 ovex 7420 . . . . . . . . . . . 12 (2om 𝐴) ∈ V
1817enref 8956 . . . . . . . . . . 11 (2om 𝐴) ≈ (2om 𝐴)
19 2on 8447 . . . . . . . . . . . . 13 2o ∈ On
2019a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ω → 2o ∈ On)
21 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ ω)
2220, 21mapsnend 9007 . . . . . . . . . . 11 (𝐴 ∈ ω → (2om {𝐴}) ≈ 2o)
23 xpen 9104 . . . . . . . . . . 11 (((2om 𝐴) ≈ (2om 𝐴) ∧ (2om {𝐴}) ≈ 2o) → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
2418, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ω → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
25 entr 8977 . . . . . . . . . 10 (((2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})) ∧ ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o)) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
2616, 24, 25syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
275, 26eqbrtrid 5142 . . . . . . . 8 (𝐴 ∈ ω → (2om suc 𝐴) ≈ ((2om 𝐴) × 2o))
2817, 10xpcomen 9032 . . . . . . . 8 ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))
29 entr 8977 . . . . . . . 8 (((2om suc 𝐴) ≈ ((2om 𝐴) × 2o) ∧ ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))) → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3027, 28, 29sylancl 586 . . . . . . 7 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3110enref 8956 . . . . . . . . 9 2o ≈ 2o
32 pw2eng 9047 . . . . . . . . 9 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (2om 𝐴))
33 xpen 9104 . . . . . . . . 9 ((2o ≈ 2o ∧ 𝒫 𝐴 ≈ (2om 𝐴)) → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3431, 32, 33sylancr 587 . . . . . . . 8 (𝐴 ∈ ω → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3534ensymd 8976 . . . . . . 7 (𝐴 ∈ ω → (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴))
36 entr 8977 . . . . . . 7 (((2om suc 𝐴) ≈ (2o × (2om 𝐴)) ∧ (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴)) → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
3730, 35, 36syl2anc 584 . . . . . 6 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
38 entr 8977 . . . . . 6 ((𝒫 suc 𝐴 ≈ (2om suc 𝐴) ∧ (2om suc 𝐴) ≈ (2o × 𝒫 𝐴)) → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
393, 37, 38syl2anc 584 . . . . 5 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
40 xp2dju 10130 . . . . 5 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
4139, 40breqtrdi 5148 . . . 4 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
42 nnfi 9131 . . . . . . . 8 (𝐴 ∈ ω → 𝐴 ∈ Fin)
43 pwfi 9268 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
4442, 43sylib 218 . . . . . . 7 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
45 ficardid 9915 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
4644, 45syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
47 djuen 10123 . . . . . 6 (((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4846, 46, 47syl2anc 584 . . . . 5 (𝐴 ∈ ω → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4948ensymd 8976 . . . 4 (𝐴 ∈ ω → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
50 entr 8977 . . . 4 ((𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
5141, 49, 50syl2anc 584 . . 3 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
52 carden2b 9920 . . 3 (𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
5351, 52syl 17 . 2 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
54 ficardom 9914 . . . 4 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
5544, 54syl 17 . . 3 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
56 nnadju 10151 . . 3 (((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫 𝐴) ∈ ω) → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5755, 55, 56syl2anc 584 . 2 (𝐴 ∈ ω → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5853, 57eqtrd 2764 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107   × cxp 5636  Ord word 6331  Oncon0 6332  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  2oc2o 8428   +o coa 8431  m cmap 8799  cen 8915  Fincfn 8918  cdju 9851  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892
This theorem is referenced by:  ackbij1lem14  10185
  Copyright terms: Public domain W3C validator