MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 10263
Description: Lemma for ackbij2 10282. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
StepHypRef Expression
1 peano2 7912 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 pw2eng 9118 . . . . . . 7 (suc 𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2om suc 𝐴))
4 df-suc 6390 . . . . . . . . . 10 suc 𝐴 = (𝐴 ∪ {𝐴})
54oveq2i 7442 . . . . . . . . 9 (2om suc 𝐴) = (2om (𝐴 ∪ {𝐴}))
6 elex 3501 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴 ∈ V)
7 snex 5436 . . . . . . . . . . . 12 {𝐴} ∈ V
87a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → {𝐴} ∈ V)
9 2onn 8680 . . . . . . . . . . . . 13 2o ∈ ω
109elexi 3503 . . . . . . . . . . . 12 2o ∈ V
1110a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ω → 2o ∈ V)
12 nnord 7895 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
13 orddisj 6422 . . . . . . . . . . . 12 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
1412, 13syl 17 . . . . . . . . . . 11 (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅)
15 mapunen 9186 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ {𝐴} ∈ V ∧ 2o ∈ V) ∧ (𝐴 ∩ {𝐴}) = ∅) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
166, 8, 11, 14, 15syl31anc 1375 . . . . . . . . . 10 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})))
17 ovex 7464 . . . . . . . . . . . 12 (2om 𝐴) ∈ V
1817enref 9025 . . . . . . . . . . 11 (2om 𝐴) ≈ (2om 𝐴)
19 2on 8520 . . . . . . . . . . . . 13 2o ∈ On
2019a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ω → 2o ∈ On)
21 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ ω)
2220, 21mapsnend 9076 . . . . . . . . . . 11 (𝐴 ∈ ω → (2om {𝐴}) ≈ 2o)
23 xpen 9180 . . . . . . . . . . 11 (((2om 𝐴) ≈ (2om 𝐴) ∧ (2om {𝐴}) ≈ 2o) → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
2418, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ω → ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o))
25 entr 9046 . . . . . . . . . 10 (((2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × (2om {𝐴})) ∧ ((2om 𝐴) × (2om {𝐴})) ≈ ((2om 𝐴) × 2o)) → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
2616, 24, 25syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ω → (2om (𝐴 ∪ {𝐴})) ≈ ((2om 𝐴) × 2o))
275, 26eqbrtrid 5178 . . . . . . . 8 (𝐴 ∈ ω → (2om suc 𝐴) ≈ ((2om 𝐴) × 2o))
2817, 10xpcomen 9103 . . . . . . . 8 ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))
29 entr 9046 . . . . . . . 8 (((2om suc 𝐴) ≈ ((2om 𝐴) × 2o) ∧ ((2om 𝐴) × 2o) ≈ (2o × (2om 𝐴))) → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3027, 28, 29sylancl 586 . . . . . . 7 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × (2om 𝐴)))
3110enref 9025 . . . . . . . . 9 2o ≈ 2o
32 pw2eng 9118 . . . . . . . . 9 (𝐴 ∈ ω → 𝒫 𝐴 ≈ (2om 𝐴))
33 xpen 9180 . . . . . . . . 9 ((2o ≈ 2o ∧ 𝒫 𝐴 ≈ (2om 𝐴)) → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3431, 32, 33sylancr 587 . . . . . . . 8 (𝐴 ∈ ω → (2o × 𝒫 𝐴) ≈ (2o × (2om 𝐴)))
3534ensymd 9045 . . . . . . 7 (𝐴 ∈ ω → (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴))
36 entr 9046 . . . . . . 7 (((2om suc 𝐴) ≈ (2o × (2om 𝐴)) ∧ (2o × (2om 𝐴)) ≈ (2o × 𝒫 𝐴)) → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
3730, 35, 36syl2anc 584 . . . . . 6 (𝐴 ∈ ω → (2om suc 𝐴) ≈ (2o × 𝒫 𝐴))
38 entr 9046 . . . . . 6 ((𝒫 suc 𝐴 ≈ (2om suc 𝐴) ∧ (2om suc 𝐴) ≈ (2o × 𝒫 𝐴)) → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
393, 37, 38syl2anc 584 . . . . 5 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (2o × 𝒫 𝐴))
40 xp2dju 10217 . . . . 5 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
4139, 40breqtrdi 5184 . . . 4 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
42 nnfi 9207 . . . . . . . 8 (𝐴 ∈ ω → 𝐴 ∈ Fin)
43 pwfi 9357 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
4442, 43sylib 218 . . . . . . 7 (𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin)
45 ficardid 10002 . . . . . . 7 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
4644, 45syl 17 . . . . . 6 (𝐴 ∈ ω → (card‘𝒫 𝐴) ≈ 𝒫 𝐴)
47 djuen 10210 . . . . . 6 (((card‘𝒫 𝐴) ≈ 𝒫 𝐴 ∧ (card‘𝒫 𝐴) ≈ 𝒫 𝐴) → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4846, 46, 47syl2anc 584 . . . . 5 (𝐴 ∈ ω → ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
4948ensymd 9045 . . . 4 (𝐴 ∈ ω → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
50 entr 9046 . . . 4 ((𝒫 suc 𝐴 ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴) ∧ (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
5141, 49, 50syl2anc 584 . . 3 (𝐴 ∈ ω → 𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)))
52 carden2b 10007 . . 3 (𝒫 suc 𝐴 ≈ ((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴)) → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
5351, 52syl 17 . 2 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))))
54 ficardom 10001 . . . 4 (𝒫 𝐴 ∈ Fin → (card‘𝒫 𝐴) ∈ ω)
5544, 54syl 17 . . 3 (𝐴 ∈ ω → (card‘𝒫 𝐴) ∈ ω)
56 nnadju 10238 . . 3 (((card‘𝒫 𝐴) ∈ ω ∧ (card‘𝒫 𝐴) ∈ ω) → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5755, 55, 56syl2anc 584 . 2 (𝐴 ∈ ω → (card‘((card‘𝒫 𝐴) ⊔ (card‘𝒫 𝐴))) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
5853, 57eqtrd 2777 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  cin 3950  c0 4333  𝒫 cpw 4600  {csn 4626   class class class wbr 5143   × cxp 5683  Ord word 6383  Oncon0 6384  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  2oc2o 8500   +o coa 8503  m cmap 8866  cen 8982  Fincfn 8985  cdju 9938  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979
This theorem is referenced by:  ackbij1lem14  10272
  Copyright terms: Public domain W3C validator