Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dju0en | Structured version Visualization version GIF version |
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dju0en | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5251 | . . 3 ⊢ ∅ ∈ V | |
2 | in0 4338 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | endjudisj 10025 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V ∧ (𝐴 ∩ ∅) = ∅) → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅)) | |
4 | 1, 2, 3 | mp3an23 1452 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅)) |
5 | un0 4337 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 4, 5 | breqtrdi 5133 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3896 ∩ cin 3897 ∅c0 4269 class class class wbr 5092 ≈ cen 8801 ⊔ cdju 9755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-1st 7899 df-2nd 7900 df-1o 8367 df-er 8569 df-en 8805 df-dju 9758 |
This theorem is referenced by: djulepw 10049 nnadju 10054 |
Copyright terms: Public domain | W3C validator |