MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju0en Structured version   Visualization version   GIF version

Theorem dju0en 10167
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dju0en (𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)

Proof of Theorem dju0en
StepHypRef Expression
1 0ex 5298 . . 3 ∅ ∈ V
2 in0 4384 . . 3 (𝐴 ∩ ∅) = ∅
3 endjudisj 10160 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V ∧ (𝐴 ∩ ∅) = ∅) → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅))
41, 2, 3mp3an23 1449 . 2 (𝐴𝑉 → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅))
5 un0 4383 . 2 (𝐴 ∪ ∅) = 𝐴
64, 5breqtrdi 5180 1 (𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  cun 3939  cin 3940  c0 4315   class class class wbr 5139  cen 8933  cdju 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1st 7969  df-2nd 7970  df-1o 8462  df-er 8700  df-en 8937  df-dju 9893
This theorem is referenced by:  djulepw  10184  nnadju  10189
  Copyright terms: Public domain W3C validator