Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwdju1 | Structured version Visualization version GIF version |
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdju1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8209 | . . . . 5 ⊢ 1o ∈ On | |
2 | pwdjuen 9795 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) | |
3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) |
4 | pwexg 5271 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
5 | 1oex 8215 | . . . . . 6 ⊢ 1o ∈ V | |
6 | 5 | pwex 5273 | . . . . 5 ⊢ 𝒫 1o ∈ V |
7 | xpcomeng 8737 | . . . . 5 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
8 | 4, 6, 7 | sylancl 589 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
9 | entr 8680 | . . . 4 ⊢ ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
10 | 3, 8, 9 | syl2anc 587 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
11 | pwpw0 4726 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
12 | df1o2 8214 | . . . . . . 7 ⊢ 1o = {∅} | |
13 | 12 | pweqi 4531 | . . . . . 6 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | df2o2 8218 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
15 | 11, 13, 14 | 3eqtr4i 2775 | . . . . 5 ⊢ 𝒫 1o = 2o |
16 | 15 | xpeq1i 5577 | . . . 4 ⊢ (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴) |
17 | xp2dju 9790 | . . . 4 ⊢ (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) | |
18 | 16, 17 | eqtri 2765 | . . 3 ⊢ (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) |
19 | 10, 18 | breqtrdi 5094 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴)) |
20 | 19 | ensymd 8679 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 𝒫 cpw 4513 {csn 4541 {cpr 4543 class class class wbr 5053 × cxp 5549 Oncon0 6213 1oc1o 8195 2oc2o 8196 ≈ cen 8623 ⊔ cdju 9514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-dju 9517 |
This theorem is referenced by: pwdjuidm 9805 djulepw 9806 pwsdompw 9818 gchdjuidm 10282 gchpwdom 10284 |
Copyright terms: Public domain | W3C validator |