MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdju1 Structured version   Visualization version   GIF version

Theorem pwdju1 10260
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdju1 (𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))

Proof of Theorem pwdju1
StepHypRef Expression
1 1on 8534 . . . . 5 1o ∈ On
2 pwdjuen 10251 . . . . 5 ((𝐴𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o))
31, 2mpan2 690 . . . 4 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o))
4 pwexg 5396 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
5 1oex 8532 . . . . . 6 1o ∈ V
65pwex 5398 . . . . 5 𝒫 1o ∈ V
7 xpcomeng 9130 . . . . 5 ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴))
84, 6, 7sylancl 585 . . . 4 (𝐴𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴))
9 entr 9066 . . . 4 ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴))
103, 8, 9syl2anc 583 . . 3 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴))
11 pwpw0 4838 . . . . . 6 𝒫 {∅} = {∅, {∅}}
12 df1o2 8529 . . . . . . 7 1o = {∅}
1312pweqi 4638 . . . . . 6 𝒫 1o = 𝒫 {∅}
14 df2o2 8531 . . . . . 6 2o = {∅, {∅}}
1511, 13, 143eqtr4i 2778 . . . . 5 𝒫 1o = 2o
1615xpeq1i 5726 . . . 4 (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴)
17 xp2dju 10246 . . . 4 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
1816, 17eqtri 2768 . . 3 (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
1910, 18breqtrdi 5207 . 2 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
2019ensymd 9065 1 (𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  c0 4352  𝒫 cpw 4622  {csn 4648  {cpr 4650   class class class wbr 5166   × cxp 5698  Oncon0 6395  1oc1o 8515  2oc2o 8516  cen 9000  cdju 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-dju 9970
This theorem is referenced by:  pwdjuidm  10261  djulepw  10262  pwsdompw  10272  gchdjuidm  10737  gchpwdom  10739
  Copyright terms: Public domain W3C validator