![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdju1 | Structured version Visualization version GIF version |
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdju1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8428 | . . . . 5 ⊢ 1o ∈ On | |
2 | pwdjuen 10125 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) | |
3 | 1, 2 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) |
4 | pwexg 5337 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
5 | 1oex 8426 | . . . . . 6 ⊢ 1o ∈ V | |
6 | 5 | pwex 5339 | . . . . 5 ⊢ 𝒫 1o ∈ V |
7 | xpcomeng 9014 | . . . . 5 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
8 | 4, 6, 7 | sylancl 587 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
9 | entr 8952 | . . . 4 ⊢ ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
10 | 3, 8, 9 | syl2anc 585 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
11 | pwpw0 4777 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
12 | df1o2 8423 | . . . . . . 7 ⊢ 1o = {∅} | |
13 | 12 | pweqi 4580 | . . . . . 6 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | df2o2 8425 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
15 | 11, 13, 14 | 3eqtr4i 2771 | . . . . 5 ⊢ 𝒫 1o = 2o |
16 | 15 | xpeq1i 5663 | . . . 4 ⊢ (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴) |
17 | xp2dju 10120 | . . . 4 ⊢ (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) | |
18 | 16, 17 | eqtri 2761 | . . 3 ⊢ (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) |
19 | 10, 18 | breqtrdi 5150 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴)) |
20 | 19 | ensymd 8951 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3447 ∅c0 4286 𝒫 cpw 4564 {csn 4590 {cpr 4592 class class class wbr 5109 × cxp 5635 Oncon0 6321 1oc1o 8409 2oc2o 8410 ≈ cen 8886 ⊔ cdju 9842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 df-1o 8416 df-2o 8417 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-dju 9845 |
This theorem is referenced by: pwdjuidm 10135 djulepw 10136 pwsdompw 10148 gchdjuidm 10612 gchpwdom 10614 |
Copyright terms: Public domain | W3C validator |