| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwdju1 | Structured version Visualization version GIF version | ||
| Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| pwdju1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8397 | . . . . 5 ⊢ 1o ∈ On | |
| 2 | pwdjuen 10073 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) | |
| 3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) |
| 4 | pwexg 5314 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 5 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 6 | 5 | pwex 5316 | . . . . 5 ⊢ 𝒫 1o ∈ V |
| 7 | xpcomeng 8982 | . . . . 5 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
| 8 | 4, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
| 9 | entr 8928 | . . . 4 ⊢ ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
| 10 | 3, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
| 11 | pwpw0 4762 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
| 12 | df1o2 8392 | . . . . . . 7 ⊢ 1o = {∅} | |
| 13 | 12 | pweqi 4563 | . . . . . 6 ⊢ 𝒫 1o = 𝒫 {∅} |
| 14 | df2o2 8394 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
| 15 | 11, 13, 14 | 3eqtr4i 2764 | . . . . 5 ⊢ 𝒫 1o = 2o |
| 16 | 15 | xpeq1i 5640 | . . . 4 ⊢ (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴) |
| 17 | xp2dju 10068 | . . . 4 ⊢ (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) | |
| 18 | 16, 17 | eqtri 2754 | . . 3 ⊢ (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) |
| 19 | 10, 18 | breqtrdi 5130 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴)) |
| 20 | 19 | ensymd 8927 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 𝒫 cpw 4547 {csn 4573 {cpr 4575 class class class wbr 5089 × cxp 5612 Oncon0 6306 1oc1o 8378 2oc2o 8379 ≈ cen 8866 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-dju 9794 |
| This theorem is referenced by: pwdjuidm 10083 djulepw 10084 pwsdompw 10094 gchdjuidm 10559 gchpwdom 10561 |
| Copyright terms: Public domain | W3C validator |