Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdju1 Structured version   Visualization version   GIF version

Theorem pwdju1 9603
 Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdju1 (𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))

Proof of Theorem pwdju1
StepHypRef Expression
1 1on 8094 . . . . 5 1o ∈ On
2 pwdjuen 9594 . . . . 5 ((𝐴𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o))
31, 2mpan2 690 . . . 4 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o))
4 pwexg 5244 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
5 1oex 8095 . . . . . 6 1o ∈ V
65pwex 5246 . . . . 5 𝒫 1o ∈ V
7 xpcomeng 8594 . . . . 5 ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴))
84, 6, 7sylancl 589 . . . 4 (𝐴𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴))
9 entr 8546 . . . 4 ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴))
103, 8, 9syl2anc 587 . . 3 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴))
11 pwpw0 4706 . . . . . 6 𝒫 {∅} = {∅, {∅}}
12 df1o2 8101 . . . . . . 7 1o = {∅}
1312pweqi 4515 . . . . . 6 𝒫 1o = 𝒫 {∅}
14 df2o2 8103 . . . . . 6 2o = {∅, {∅}}
1511, 13, 143eqtr4i 2831 . . . . 5 𝒫 1o = 2o
1615xpeq1i 5545 . . . 4 (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴)
17 xp2dju 9589 . . . 4 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
1816, 17eqtri 2821 . . 3 (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
1910, 18breqtrdi 5071 . 2 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
2019ensymd 8545 1 (𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2111  Vcvv 3441  ∅c0 4243  𝒫 cpw 4497  {csn 4525  {cpr 4527   class class class wbr 5030   × cxp 5517  Oncon0 6159  1oc1o 8080  2oc2o 8081   ≈ cen 8491   ⊔ cdju 9313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7673  df-2nd 7674  df-1o 8087  df-2o 8088  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-dju 9316 This theorem is referenced by:  pwdjuidm  9604  djulepw  9605  pwsdompw  9617  gchdjuidm  10081  gchpwdom  10083
 Copyright terms: Public domain W3C validator