MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdju1 Structured version   Visualization version   GIF version

Theorem pwdju1 10205
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdju1 (𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))

Proof of Theorem pwdju1
StepHypRef Expression
1 1on 8492 . . . . 5 1o ∈ On
2 pwdjuen 10196 . . . . 5 ((𝐴𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o))
31, 2mpan2 691 . . . 4 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o))
4 pwexg 5348 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
5 1oex 8490 . . . . . 6 1o ∈ V
65pwex 5350 . . . . 5 𝒫 1o ∈ V
7 xpcomeng 9078 . . . . 5 ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴))
84, 6, 7sylancl 586 . . . 4 (𝐴𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴))
9 entr 9020 . . . 4 ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴))
103, 8, 9syl2anc 584 . . 3 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴))
11 pwpw0 4789 . . . . . 6 𝒫 {∅} = {∅, {∅}}
12 df1o2 8487 . . . . . . 7 1o = {∅}
1312pweqi 4591 . . . . . 6 𝒫 1o = 𝒫 {∅}
14 df2o2 8489 . . . . . 6 2o = {∅, {∅}}
1511, 13, 143eqtr4i 2768 . . . . 5 𝒫 1o = 2o
1615xpeq1i 5680 . . . 4 (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴)
17 xp2dju 10191 . . . 4 (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
1816, 17eqtri 2758 . . 3 (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴)
1910, 18breqtrdi 5160 . 2 (𝐴𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴))
2019ensymd 9019 1 (𝐴𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603   class class class wbr 5119   × cxp 5652  Oncon0 6352  1oc1o 8473  2oc2o 8474  cen 8956  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-dju 9915
This theorem is referenced by:  pwdjuidm  10206  djulepw  10207  pwsdompw  10217  gchdjuidm  10682  gchpwdom  10684
  Copyright terms: Public domain W3C validator