Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwdju1 | Structured version Visualization version GIF version |
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdju1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8309 | . . . . 5 ⊢ 1o ∈ On | |
2 | pwdjuen 9937 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) | |
3 | 1, 2 | mpan2 688 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) |
4 | pwexg 5301 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
5 | 1oex 8307 | . . . . . 6 ⊢ 1o ∈ V | |
6 | 5 | pwex 5303 | . . . . 5 ⊢ 𝒫 1o ∈ V |
7 | xpcomeng 8851 | . . . . 5 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
8 | 4, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
9 | entr 8792 | . . . 4 ⊢ ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
10 | 3, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
11 | pwpw0 4746 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
12 | df1o2 8304 | . . . . . . 7 ⊢ 1o = {∅} | |
13 | 12 | pweqi 4551 | . . . . . 6 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | df2o2 8306 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
15 | 11, 13, 14 | 3eqtr4i 2776 | . . . . 5 ⊢ 𝒫 1o = 2o |
16 | 15 | xpeq1i 5615 | . . . 4 ⊢ (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴) |
17 | xp2dju 9932 | . . . 4 ⊢ (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) | |
18 | 16, 17 | eqtri 2766 | . . 3 ⊢ (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) |
19 | 10, 18 | breqtrdi 5115 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴)) |
20 | 19 | ensymd 8791 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 {csn 4561 {cpr 4563 class class class wbr 5074 × cxp 5587 Oncon0 6266 1oc1o 8290 2oc2o 8291 ≈ cen 8730 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-dju 9659 |
This theorem is referenced by: pwdjuidm 9947 djulepw 9948 pwsdompw 9960 gchdjuidm 10424 gchpwdom 10426 |
Copyright terms: Public domain | W3C validator |