![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdju1 | Structured version Visualization version GIF version |
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdju1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8534 | . . . . 5 ⊢ 1o ∈ On | |
2 | pwdjuen 10251 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 1o ∈ On) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) | |
3 | 1, 2 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o)) |
4 | pwexg 5396 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
5 | 1oex 8532 | . . . . . 6 ⊢ 1o ∈ V | |
6 | 5 | pwex 5398 | . . . . 5 ⊢ 𝒫 1o ∈ V |
7 | xpcomeng 9130 | . . . . 5 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V) → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
8 | 4, 6, 7 | sylancl 585 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
9 | entr 9066 | . . . 4 ⊢ ((𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 × 𝒫 1o) ∧ (𝒫 𝐴 × 𝒫 1o) ≈ (𝒫 1o × 𝒫 𝐴)) → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) | |
10 | 3, 8, 9 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 1o × 𝒫 𝐴)) |
11 | pwpw0 4838 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
12 | df1o2 8529 | . . . . . . 7 ⊢ 1o = {∅} | |
13 | 12 | pweqi 4638 | . . . . . 6 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | df2o2 8531 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
15 | 11, 13, 14 | 3eqtr4i 2778 | . . . . 5 ⊢ 𝒫 1o = 2o |
16 | 15 | xpeq1i 5726 | . . . 4 ⊢ (𝒫 1o × 𝒫 𝐴) = (2o × 𝒫 𝐴) |
17 | xp2dju 10246 | . . . 4 ⊢ (2o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) | |
18 | 16, 17 | eqtri 2768 | . . 3 ⊢ (𝒫 1o × 𝒫 𝐴) = (𝒫 𝐴 ⊔ 𝒫 𝐴) |
19 | 10, 18 | breqtrdi 5207 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 ⊔ 1o) ≈ (𝒫 𝐴 ⊔ 𝒫 𝐴)) |
20 | 19 | ensymd 9065 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 𝒫 cpw 4622 {csn 4648 {cpr 4650 class class class wbr 5166 × cxp 5698 Oncon0 6395 1oc1o 8515 2oc2o 8516 ≈ cen 9000 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-dju 9970 |
This theorem is referenced by: pwdjuidm 10261 djulepw 10262 pwsdompw 10272 gchdjuidm 10737 gchpwdom 10739 |
Copyright terms: Public domain | W3C validator |