MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unctb Structured version   Visualization version   GIF version

Theorem unctb 9961
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
unctb ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)

Proof of Theorem unctb
StepHypRef Expression
1 ctex 8753 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 ctex 8753 . . 3 (𝐵 ≼ ω → 𝐵 ∈ V)
3 undjudom 9923 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐵))
41, 2, 3syl2an 596 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (𝐴𝐵))
5 djudom1 9938 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
62, 5sylan2 593 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
7 simpr 485 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
8 omex 9401 . . . . 5 ω ∈ V
9 djudom2 9939 . . . . 5 ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
107, 8, 9sylancl 586 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
11 domtr 8793 . . . 4 (((𝐴𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴𝐵) ≼ (ω ⊔ ω))
126, 10, 11syl2anc 584 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ ω))
138, 8xpex 7603 . . . . 5 (ω × ω) ∈ V
14 xp2dju 9932 . . . . . 6 (2o × ω) = (ω ⊔ ω)
15 ordom 7722 . . . . . . . 8 Ord ω
16 2onn 8472 . . . . . . . 8 2o ∈ ω
17 ordelss 6282 . . . . . . . 8 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1815, 16, 17mp2an 689 . . . . . . 7 2o ⊆ ω
19 xpss1 5608 . . . . . . 7 (2o ⊆ ω → (2o × ω) ⊆ (ω × ω))
2018, 19ax-mp 5 . . . . . 6 (2o × ω) ⊆ (ω × ω)
2114, 20eqsstrri 3956 . . . . 5 (ω ⊔ ω) ⊆ (ω × ω)
22 ssdomg 8786 . . . . 5 ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω)))
2313, 21, 22mp2 9 . . . 4 (ω ⊔ ω) ≼ (ω × ω)
24 xpomen 9771 . . . 4 (ω × ω) ≈ ω
25 domentr 8799 . . . 4 (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω)
2623, 24, 25mp2an 689 . . 3 (ω ⊔ ω) ≼ ω
27 domtr 8793 . . 3 (((𝐴𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴𝐵) ≼ ω)
2812, 26, 27sylancl 586 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
29 domtr 8793 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ω) → (𝐴𝐵) ≼ ω)
304, 28, 29syl2anc 584 1 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432  cun 3885  wss 3887   class class class wbr 5074   × cxp 5587  Ord word 6265  ωcom 7712  2oc2o 8291  cen 8730  cdom 8731  cdju 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697
This theorem is referenced by:  cctop  22156  2ndcdisj2  22608  ovolctb2  24656  uniiccdif  24742  prct  31049  pibt2  35588
  Copyright terms: Public domain W3C validator