MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unctb Structured version   Visualization version   GIF version

Theorem unctb 10149
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
unctb ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)

Proof of Theorem unctb
StepHypRef Expression
1 ctex 8909 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 ctex 8909 . . 3 (𝐵 ≼ ω → 𝐵 ∈ V)
3 undjudom 10111 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐵))
41, 2, 3syl2an 597 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (𝐴𝐵))
5 djudom1 10126 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
62, 5sylan2 594 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
7 simpr 486 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
8 omex 9587 . . . . 5 ω ∈ V
9 djudom2 10127 . . . . 5 ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
107, 8, 9sylancl 587 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
11 domtr 8953 . . . 4 (((𝐴𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴𝐵) ≼ (ω ⊔ ω))
126, 10, 11syl2anc 585 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ ω))
138, 8xpex 7691 . . . . 5 (ω × ω) ∈ V
14 xp2dju 10120 . . . . . 6 (2o × ω) = (ω ⊔ ω)
15 ordom 7816 . . . . . . . 8 Ord ω
16 2onn 8592 . . . . . . . 8 2o ∈ ω
17 ordelss 6337 . . . . . . . 8 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1815, 16, 17mp2an 691 . . . . . . 7 2o ⊆ ω
19 xpss1 5656 . . . . . . 7 (2o ⊆ ω → (2o × ω) ⊆ (ω × ω))
2018, 19ax-mp 5 . . . . . 6 (2o × ω) ⊆ (ω × ω)
2114, 20eqsstrri 3983 . . . . 5 (ω ⊔ ω) ⊆ (ω × ω)
22 ssdomg 8946 . . . . 5 ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω)))
2313, 21, 22mp2 9 . . . 4 (ω ⊔ ω) ≼ (ω × ω)
24 xpomen 9959 . . . 4 (ω × ω) ≈ ω
25 domentr 8959 . . . 4 (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω)
2623, 24, 25mp2an 691 . . 3 (ω ⊔ ω) ≼ ω
27 domtr 8953 . . 3 (((𝐴𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴𝐵) ≼ ω)
2812, 26, 27sylancl 587 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
29 domtr 8953 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ω) → (𝐴𝐵) ≼ ω)
304, 28, 29syl2anc 585 1 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  Vcvv 3447  cun 3912  wss 3914   class class class wbr 5109   × cxp 5635  Ord word 6320  ωcom 7806  2oc2o 8410  cen 8886  cdom 8887  cdju 9842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-oi 9454  df-dju 9845  df-card 9883
This theorem is referenced by:  cctop  22379  2ndcdisj2  22831  ovolctb2  24879  uniiccdif  24965  prct  31685  pibt2  35938
  Copyright terms: Public domain W3C validator