MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unctb Structured version   Visualization version   GIF version

Theorem unctb 10133
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
unctb ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)

Proof of Theorem unctb
StepHypRef Expression
1 ctex 8912 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 ctex 8912 . . 3 (𝐵 ≼ ω → 𝐵 ∈ V)
3 undjudom 10097 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐵))
41, 2, 3syl2an 596 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (𝐴𝐵))
5 djudom1 10112 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
62, 5sylan2 593 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
7 simpr 484 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
8 omex 9572 . . . . 5 ω ∈ V
9 djudom2 10113 . . . . 5 ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
107, 8, 9sylancl 586 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
11 domtr 8955 . . . 4 (((𝐴𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴𝐵) ≼ (ω ⊔ ω))
126, 10, 11syl2anc 584 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ ω))
138, 8xpex 7709 . . . . 5 (ω × ω) ∈ V
14 xp2dju 10106 . . . . . 6 (2o × ω) = (ω ⊔ ω)
15 ordom 7832 . . . . . . . 8 Ord ω
16 2onn 8583 . . . . . . . 8 2o ∈ ω
17 ordelss 6336 . . . . . . . 8 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1815, 16, 17mp2an 692 . . . . . . 7 2o ⊆ ω
19 xpss1 5650 . . . . . . 7 (2o ⊆ ω → (2o × ω) ⊆ (ω × ω))
2018, 19ax-mp 5 . . . . . 6 (2o × ω) ⊆ (ω × ω)
2114, 20eqsstrri 3991 . . . . 5 (ω ⊔ ω) ⊆ (ω × ω)
22 ssdomg 8948 . . . . 5 ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω)))
2313, 21, 22mp2 9 . . . 4 (ω ⊔ ω) ≼ (ω × ω)
24 xpomen 9944 . . . 4 (ω × ω) ≈ ω
25 domentr 8961 . . . 4 (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω)
2623, 24, 25mp2an 692 . . 3 (ω ⊔ ω) ≼ ω
27 domtr 8955 . . 3 (((𝐴𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴𝐵) ≼ ω)
2812, 26, 27sylancl 586 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
29 domtr 8955 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ω) → (𝐴𝐵) ≼ ω)
304, 28, 29syl2anc 584 1 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3444  cun 3909  wss 3911   class class class wbr 5102   × cxp 5629  Ord word 6319  ωcom 7822  2oc2o 8405  cen 8892  cdom 8893  cdju 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-oi 9439  df-dju 9830  df-card 9868
This theorem is referenced by:  cctop  22869  2ndcdisj2  23320  ovolctb2  25369  uniiccdif  25455  prct  32611  pibt2  37378
  Copyright terms: Public domain W3C validator