MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unctb Structured version   Visualization version   GIF version

Theorem unctb 9892
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
unctb ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)

Proof of Theorem unctb
StepHypRef Expression
1 ctex 8708 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 ctex 8708 . . 3 (𝐵 ≼ ω → 𝐵 ∈ V)
3 undjudom 9854 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐵))
41, 2, 3syl2an 595 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (𝐴𝐵))
5 djudom1 9869 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
62, 5sylan2 592 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
7 simpr 484 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
8 omex 9331 . . . . 5 ω ∈ V
9 djudom2 9870 . . . . 5 ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
107, 8, 9sylancl 585 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
11 domtr 8748 . . . 4 (((𝐴𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴𝐵) ≼ (ω ⊔ ω))
126, 10, 11syl2anc 583 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ ω))
138, 8xpex 7581 . . . . 5 (ω × ω) ∈ V
14 xp2dju 9863 . . . . . 6 (2o × ω) = (ω ⊔ ω)
15 ordom 7697 . . . . . . . 8 Ord ω
16 2onn 8433 . . . . . . . 8 2o ∈ ω
17 ordelss 6267 . . . . . . . 8 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1815, 16, 17mp2an 688 . . . . . . 7 2o ⊆ ω
19 xpss1 5599 . . . . . . 7 (2o ⊆ ω → (2o × ω) ⊆ (ω × ω))
2018, 19ax-mp 5 . . . . . 6 (2o × ω) ⊆ (ω × ω)
2114, 20eqsstrri 3952 . . . . 5 (ω ⊔ ω) ⊆ (ω × ω)
22 ssdomg 8741 . . . . 5 ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω)))
2313, 21, 22mp2 9 . . . 4 (ω ⊔ ω) ≼ (ω × ω)
24 xpomen 9702 . . . 4 (ω × ω) ≈ ω
25 domentr 8754 . . . 4 (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω)
2623, 24, 25mp2an 688 . . 3 (ω ⊔ ω) ≼ ω
27 domtr 8748 . . 3 (((𝐴𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴𝐵) ≼ ω)
2812, 26, 27sylancl 585 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
29 domtr 8748 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ω) → (𝐴𝐵) ≼ ω)
304, 28, 29syl2anc 583 1 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  cun 3881  wss 3883   class class class wbr 5070   × cxp 5578  Ord word 6250  ωcom 7687  2oc2o 8261  cen 8688  cdom 8689  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628
This theorem is referenced by:  cctop  22064  2ndcdisj2  22516  ovolctb2  24561  uniiccdif  24647  prct  30951  pibt2  35515
  Copyright terms: Public domain W3C validator