Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unctb Structured version   Visualization version   GIF version

Theorem unctb 9478
 Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
unctb ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)

Proof of Theorem unctb
StepHypRef Expression
1 ctex 8377 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 ctex 8377 . . 3 (𝐵 ≼ ω → 𝐵 ∈ V)
3 undjudom 9444 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐵))
41, 2, 3syl2an 595 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (𝐴𝐵))
5 djudom1 9459 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
62, 5sylan2 592 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ 𝐵))
7 simpr 485 . . . . 5 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω)
8 omex 8957 . . . . 5 ω ∈ V
9 djudom2 9460 . . . . 5 ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
107, 8, 9sylancl 586 . . . 4 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω))
11 domtr 8415 . . . 4 (((𝐴𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴𝐵) ≼ (ω ⊔ ω))
126, 10, 11syl2anc 584 . . 3 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ (ω ⊔ ω))
138, 8xpex 7338 . . . . 5 (ω × ω) ∈ V
14 xp2dju 9453 . . . . . 6 (2o × ω) = (ω ⊔ ω)
15 ordom 7450 . . . . . . . 8 Ord ω
16 2onn 8121 . . . . . . . 8 2o ∈ ω
17 ordelss 6087 . . . . . . . 8 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1815, 16, 17mp2an 688 . . . . . . 7 2o ⊆ ω
19 xpss1 5467 . . . . . . 7 (2o ⊆ ω → (2o × ω) ⊆ (ω × ω))
2018, 19ax-mp 5 . . . . . 6 (2o × ω) ⊆ (ω × ω)
2114, 20eqsstrri 3927 . . . . 5 (ω ⊔ ω) ⊆ (ω × ω)
22 ssdomg 8408 . . . . 5 ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω)))
2313, 21, 22mp2 9 . . . 4 (ω ⊔ ω) ≼ (ω × ω)
24 xpomen 9292 . . . 4 (ω × ω) ≈ ω
25 domentr 8421 . . . 4 (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω)
2623, 24, 25mp2an 688 . . 3 (ω ⊔ ω) ≼ ω
27 domtr 8415 . . 3 (((𝐴𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴𝐵) ≼ ω)
2812, 26, 27sylancl 586 . 2 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
29 domtr 8415 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ω) → (𝐴𝐵) ≼ ω)
304, 28, 29syl2anc 584 1 ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴𝐵) ≼ ω)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∈ wcel 2081  Vcvv 3437   ∪ cun 3861   ⊆ wss 3863   class class class wbr 4966   × cxp 5446  Ord word 6070  ωcom 7441  2oc2o 7952   ≈ cen 8359   ≼ cdom 8360   ⊔ cdju 9178 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-oi 8825  df-dju 9181  df-card 9219 This theorem is referenced by:  cctop  21303  2ndcdisj2  21754  ovolctb2  23781  uniiccdif  23867  prct  30143  pibt2  34255
 Copyright terms: Public domain W3C validator