Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unctb | Structured version Visualization version GIF version |
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
unctb | ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 8542 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
2 | ctex 8542 | . . 3 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
3 | undjudom 9627 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
4 | 1, 2, 3 | syl2an 598 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
5 | djudom1 9642 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) | |
6 | 2, 5 | sylan2 595 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) |
7 | simpr 488 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
8 | omex 9139 | . . . . 5 ⊢ ω ∈ V | |
9 | djudom2 9643 | . . . . 5 ⊢ ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
10 | 7, 8, 9 | sylancl 589 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) |
11 | domtr 8580 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
12 | 6, 10, 11 | syl2anc 587 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) |
13 | 8, 8 | xpex 7474 | . . . . 5 ⊢ (ω × ω) ∈ V |
14 | xp2dju 9636 | . . . . . 6 ⊢ (2o × ω) = (ω ⊔ ω) | |
15 | ordom 7588 | . . . . . . . 8 ⊢ Ord ω | |
16 | 2onn 8276 | . . . . . . . 8 ⊢ 2o ∈ ω | |
17 | ordelss 6185 | . . . . . . . 8 ⊢ ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω) | |
18 | 15, 16, 17 | mp2an 691 | . . . . . . 7 ⊢ 2o ⊆ ω |
19 | xpss1 5543 | . . . . . . 7 ⊢ (2o ⊆ ω → (2o × ω) ⊆ (ω × ω)) | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o × ω) ⊆ (ω × ω) |
21 | 14, 20 | eqsstrri 3927 | . . . . 5 ⊢ (ω ⊔ ω) ⊆ (ω × ω) |
22 | ssdomg 8573 | . . . . 5 ⊢ ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω))) | |
23 | 13, 21, 22 | mp2 9 | . . . 4 ⊢ (ω ⊔ ω) ≼ (ω × ω) |
24 | xpomen 9475 | . . . 4 ⊢ (ω × ω) ≈ ω | |
25 | domentr 8586 | . . . 4 ⊢ (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω) | |
26 | 23, 24, 25 | mp2an 691 | . . 3 ⊢ (ω ⊔ ω) ≼ ω |
27 | domtr 8580 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) | |
28 | 12, 26, 27 | sylancl 589 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) |
29 | domtr 8580 | . 2 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) | |
30 | 4, 28, 29 | syl2anc 587 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 ∪ cun 3856 ⊆ wss 3858 class class class wbr 5032 × cxp 5522 Ord word 6168 ωcom 7579 2oc2o 8106 ≈ cen 8524 ≼ cdom 8525 ⊔ cdju 9360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-oi 9007 df-dju 9363 df-card 9401 |
This theorem is referenced by: cctop 21706 2ndcdisj2 22157 ovolctb2 24192 uniiccdif 24278 prct 30573 pibt2 35114 |
Copyright terms: Public domain | W3C validator |