| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unctb | Structured version Visualization version GIF version | ||
| Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| unctb | ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex 8881 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 2 | ctex 8881 | . . 3 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 3 | undjudom 10054 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
| 5 | djudom1 10069 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) | |
| 6 | 2, 5 | sylan2 593 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
| 8 | omex 9528 | . . . . 5 ⊢ ω ∈ V | |
| 9 | djudom2 10070 | . . . . 5 ⊢ ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) |
| 11 | domtr 8924 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
| 12 | 6, 10, 11 | syl2anc 584 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) |
| 13 | 8, 8 | xpex 7681 | . . . . 5 ⊢ (ω × ω) ∈ V |
| 14 | xp2dju 10063 | . . . . . 6 ⊢ (2o × ω) = (ω ⊔ ω) | |
| 15 | ordom 7801 | . . . . . . . 8 ⊢ Ord ω | |
| 16 | 2onn 8552 | . . . . . . . 8 ⊢ 2o ∈ ω | |
| 17 | ordelss 6317 | . . . . . . . 8 ⊢ ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω) | |
| 18 | 15, 16, 17 | mp2an 692 | . . . . . . 7 ⊢ 2o ⊆ ω |
| 19 | xpss1 5630 | . . . . . . 7 ⊢ (2o ⊆ ω → (2o × ω) ⊆ (ω × ω)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o × ω) ⊆ (ω × ω) |
| 21 | 14, 20 | eqsstrri 3977 | . . . . 5 ⊢ (ω ⊔ ω) ⊆ (ω × ω) |
| 22 | ssdomg 8917 | . . . . 5 ⊢ ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω))) | |
| 23 | 13, 21, 22 | mp2 9 | . . . 4 ⊢ (ω ⊔ ω) ≼ (ω × ω) |
| 24 | xpomen 9901 | . . . 4 ⊢ (ω × ω) ≈ ω | |
| 25 | domentr 8930 | . . . 4 ⊢ (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω) | |
| 26 | 23, 24, 25 | mp2an 692 | . . 3 ⊢ (ω ⊔ ω) ≼ ω |
| 27 | domtr 8924 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) | |
| 28 | 12, 26, 27 | sylancl 586 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) |
| 29 | domtr 8924 | . 2 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) | |
| 30 | 4, 28, 29 | syl2anc 584 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 class class class wbr 5086 × cxp 5609 Ord word 6300 ωcom 7791 2oc2o 8374 ≈ cen 8861 ≼ cdom 8862 ⊔ cdju 9786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-dju 9789 df-card 9827 |
| This theorem is referenced by: cctop 22916 2ndcdisj2 23367 ovolctb2 25415 uniiccdif 25501 prct 32688 pibt2 37451 |
| Copyright terms: Public domain | W3C validator |