![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unctb | Structured version Visualization version GIF version |
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
unctb | ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 9023 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
2 | ctex 9023 | . . 3 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
3 | undjudom 10237 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
5 | djudom1 10252 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) | |
6 | 2, 5 | sylan2 592 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) |
7 | simpr 484 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
8 | omex 9712 | . . . . 5 ⊢ ω ∈ V | |
9 | djudom2 10253 | . . . . 5 ⊢ ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
10 | 7, 8, 9 | sylancl 585 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) |
11 | domtr 9067 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
12 | 6, 10, 11 | syl2anc 583 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) |
13 | 8, 8 | xpex 7788 | . . . . 5 ⊢ (ω × ω) ∈ V |
14 | xp2dju 10246 | . . . . . 6 ⊢ (2o × ω) = (ω ⊔ ω) | |
15 | ordom 7913 | . . . . . . . 8 ⊢ Ord ω | |
16 | 2onn 8698 | . . . . . . . 8 ⊢ 2o ∈ ω | |
17 | ordelss 6411 | . . . . . . . 8 ⊢ ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω) | |
18 | 15, 16, 17 | mp2an 691 | . . . . . . 7 ⊢ 2o ⊆ ω |
19 | xpss1 5719 | . . . . . . 7 ⊢ (2o ⊆ ω → (2o × ω) ⊆ (ω × ω)) | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o × ω) ⊆ (ω × ω) |
21 | 14, 20 | eqsstrri 4044 | . . . . 5 ⊢ (ω ⊔ ω) ⊆ (ω × ω) |
22 | ssdomg 9060 | . . . . 5 ⊢ ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω))) | |
23 | 13, 21, 22 | mp2 9 | . . . 4 ⊢ (ω ⊔ ω) ≼ (ω × ω) |
24 | xpomen 10084 | . . . 4 ⊢ (ω × ω) ≈ ω | |
25 | domentr 9073 | . . . 4 ⊢ (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω) | |
26 | 23, 24, 25 | mp2an 691 | . . 3 ⊢ (ω ⊔ ω) ≼ ω |
27 | domtr 9067 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) | |
28 | 12, 26, 27 | sylancl 585 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) |
29 | domtr 9067 | . 2 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) | |
30 | 4, 28, 29 | syl2anc 583 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 Ord word 6394 ωcom 7903 2oc2o 8516 ≈ cen 9000 ≼ cdom 9001 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-dju 9970 df-card 10008 |
This theorem is referenced by: cctop 23034 2ndcdisj2 23486 ovolctb2 25546 uniiccdif 25632 prct 32728 pibt2 37383 |
Copyright terms: Public domain | W3C validator |