| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unctb | Structured version Visualization version GIF version | ||
| Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| unctb | ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex 8912 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 2 | ctex 8912 | . . 3 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 3 | undjudom 10097 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
| 5 | djudom1 10112 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) | |
| 6 | 2, 5 | sylan2 593 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
| 8 | omex 9572 | . . . . 5 ⊢ ω ∈ V | |
| 9 | djudom2 10113 | . . . . 5 ⊢ ((𝐵 ≼ ω ∧ ω ∈ V) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
| 10 | 7, 8, 9 | sylancl 586 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) |
| 11 | domtr 8955 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ 𝐵) ∧ (ω ⊔ 𝐵) ≼ (ω ⊔ ω)) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) | |
| 12 | 6, 10, 11 | syl2anc 584 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω)) |
| 13 | 8, 8 | xpex 7709 | . . . . 5 ⊢ (ω × ω) ∈ V |
| 14 | xp2dju 10106 | . . . . . 6 ⊢ (2o × ω) = (ω ⊔ ω) | |
| 15 | ordom 7832 | . . . . . . . 8 ⊢ Ord ω | |
| 16 | 2onn 8583 | . . . . . . . 8 ⊢ 2o ∈ ω | |
| 17 | ordelss 6336 | . . . . . . . 8 ⊢ ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω) | |
| 18 | 15, 16, 17 | mp2an 692 | . . . . . . 7 ⊢ 2o ⊆ ω |
| 19 | xpss1 5650 | . . . . . . 7 ⊢ (2o ⊆ ω → (2o × ω) ⊆ (ω × ω)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o × ω) ⊆ (ω × ω) |
| 21 | 14, 20 | eqsstrri 3991 | . . . . 5 ⊢ (ω ⊔ ω) ⊆ (ω × ω) |
| 22 | ssdomg 8948 | . . . . 5 ⊢ ((ω × ω) ∈ V → ((ω ⊔ ω) ⊆ (ω × ω) → (ω ⊔ ω) ≼ (ω × ω))) | |
| 23 | 13, 21, 22 | mp2 9 | . . . 4 ⊢ (ω ⊔ ω) ≼ (ω × ω) |
| 24 | xpomen 9944 | . . . 4 ⊢ (ω × ω) ≈ ω | |
| 25 | domentr 8961 | . . . 4 ⊢ (((ω ⊔ ω) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (ω ⊔ ω) ≼ ω) | |
| 26 | 23, 24, 25 | mp2an 692 | . . 3 ⊢ (ω ⊔ ω) ≼ ω |
| 27 | domtr 8955 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (ω ⊔ ω) ∧ (ω ⊔ ω) ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) | |
| 28 | 12, 26, 27 | sylancl 586 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ⊔ 𝐵) ≼ ω) |
| 29 | domtr 8955 | . 2 ⊢ (((𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵) ∧ (𝐴 ⊔ 𝐵) ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) | |
| 30 | 4, 28, 29 | syl2anc 584 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 class class class wbr 5102 × cxp 5629 Ord word 6319 ωcom 7822 2oc2o 8405 ≈ cen 8892 ≼ cdom 8893 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-dju 9830 df-card 9868 |
| This theorem is referenced by: cctop 22869 2ndcdisj2 23320 ovolctb2 25369 uniiccdif 25455 prct 32611 pibt2 37378 |
| Copyright terms: Public domain | W3C validator |