MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdjuabs Structured version   Visualization version   GIF version

Theorem infdjuabs 10240
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdjuabs ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdjuabs
StepHypRef Expression
1 simp3 1135 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
2 reldom 8972 . . . . . . 7 Rel ≼
32brrelex2i 5731 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
4 djudom2 10219 . . . . . 6 ((𝐵𝐴𝐴 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐴))
51, 3, 4syl2anc2 583 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐴))
6 xp2dju 10212 . . . . 5 (2o × 𝐴) = (𝐴𝐴)
75, 6breqtrrdi 5187 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (2o × 𝐴))
8 simp1 1133 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
9 2onn 8664 . . . . . . 7 2o ∈ ω
10 nnsdom 9690 . . . . . . 7 (2o ∈ ω → 2o ≺ ω)
11 sdomdom 9003 . . . . . . 7 (2o ≺ ω → 2o ≼ ω)
129, 10, 11mp2b 10 . . . . . 6 2o ≼ ω
13 simp2 1134 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
14 domtr 9030 . . . . . 6 ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o𝐴)
1512, 13, 14sylancr 585 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 2o𝐴)
16 xpdom1g 9099 . . . . 5 ((𝐴 ∈ dom card ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
178, 15, 16syl2anc 582 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
18 domtr 9030 . . . 4 (((𝐴𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
197, 17, 18syl2anc 582 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
20 infxpidm2 10053 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
21203adant3 1129 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
22 domentr 9036 . . 3 (((𝐴𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴𝐵) ≼ 𝐴)
2319, 21, 22syl2anc 582 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
242brrelex1i 5730 . . . 4 (𝐵𝐴𝐵 ∈ V)
25243ad2ant3 1132 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ V)
26 djudoml 10220 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴𝐵))
278, 25, 26syl2anc 582 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
28 sbth 9123 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
2923, 27, 28syl2anc 582 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2099  Vcvv 3462   class class class wbr 5145   × cxp 5672  dom cdm 5674  ωcom 7868  2oc2o 8482  cen 8963  cdom 8964  csdm 8965  cdju 9934  cardccrd 9971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-oi 9546  df-dju 9937  df-card 9975
This theorem is referenced by:  infunabs  10241  infdju  10242  infdif  10243
  Copyright terms: Public domain W3C validator