| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdjuabs | Structured version Visualization version GIF version | ||
| Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infdjuabs | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
| 2 | reldom 8927 | . . . . . . 7 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5698 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
| 4 | djudom2 10144 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) | |
| 5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) |
| 6 | xp2dju 10137 | . . . . 5 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
| 7 | 5, 6 | breqtrrdi 5152 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (2o × 𝐴)) |
| 8 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 9 | 2onn 8609 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 10 | nnsdom 9614 | . . . . . . 7 ⊢ (2o ∈ ω → 2o ≺ ω) | |
| 11 | sdomdom 8954 | . . . . . . 7 ⊢ (2o ≺ ω → 2o ≼ ω) | |
| 12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ 2o ≼ ω |
| 13 | simp2 1137 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → ω ≼ 𝐴) | |
| 14 | domtr 8981 | . . . . . 6 ⊢ ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o ≼ 𝐴) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 2o ≼ 𝐴) |
| 16 | xpdom1g 9043 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 17 | 8, 15, 16 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 18 | domtr 8981 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) | |
| 19 | 7, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) |
| 20 | infxpidm2 9977 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
| 21 | 20 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
| 22 | domentr 8987 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) | |
| 23 | 19, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) |
| 24 | 2 | brrelex1i 5697 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
| 25 | 24 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ V) |
| 26 | djudoml 10145 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | |
| 27 | 8, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| 28 | sbth 9067 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵) ≈ 𝐴) | |
| 29 | 23, 27, 28 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 × cxp 5639 dom cdm 5641 ωcom 7845 2oc2o 8431 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 ⊔ cdju 9858 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-dju 9861 df-card 9899 |
| This theorem is referenced by: infunabs 10166 infdju 10167 infdif 10168 |
| Copyright terms: Public domain | W3C validator |