| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdjuabs | Structured version Visualization version GIF version | ||
| Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infdjuabs | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
| 2 | reldom 8881 | . . . . . . 7 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5676 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
| 4 | djudom2 10082 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) | |
| 5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) |
| 6 | xp2dju 10075 | . . . . 5 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
| 7 | 5, 6 | breqtrrdi 5135 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (2o × 𝐴)) |
| 8 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 9 | 2onn 8563 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 10 | nnsdom 9551 | . . . . . . 7 ⊢ (2o ∈ ω → 2o ≺ ω) | |
| 11 | sdomdom 8909 | . . . . . . 7 ⊢ (2o ≺ ω → 2o ≼ ω) | |
| 12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ 2o ≼ ω |
| 13 | simp2 1137 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → ω ≼ 𝐴) | |
| 14 | domtr 8936 | . . . . . 6 ⊢ ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o ≼ 𝐴) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 2o ≼ 𝐴) |
| 16 | xpdom1g 8994 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 17 | 8, 15, 16 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 18 | domtr 8936 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) | |
| 19 | 7, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) |
| 20 | infxpidm2 9915 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
| 21 | 20 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
| 22 | domentr 8942 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) | |
| 23 | 19, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) |
| 24 | 2 | brrelex1i 5675 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
| 25 | 24 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ V) |
| 26 | djudoml 10083 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | |
| 27 | 8, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| 28 | sbth 9017 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵) ≈ 𝐴) | |
| 29 | 23, 27, 28 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 × cxp 5617 dom cdm 5619 ωcom 7802 2oc2o 8385 ≈ cen 8872 ≼ cdom 8873 ≺ csdm 8874 ⊔ cdju 9798 cardccrd 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-dju 9801 df-card 9839 |
| This theorem is referenced by: infunabs 10104 infdju 10105 infdif 10106 |
| Copyright terms: Public domain | W3C validator |