![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdjuabs | Structured version Visualization version GIF version |
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infdjuabs | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1129 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
2 | reldom 8353 | . . . . . . 7 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5487 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
4 | djudom2 9444 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) | |
5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) |
6 | xp2dju 9437 | . . . . 5 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
7 | 5, 6 | syl6breqr 4998 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (2o × 𝐴)) |
8 | simp1 1127 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ dom card) | |
9 | 2onn 8107 | . . . . . . 7 ⊢ 2o ∈ ω | |
10 | nnsdom 8952 | . . . . . . 7 ⊢ (2o ∈ ω → 2o ≺ ω) | |
11 | sdomdom 8375 | . . . . . . 7 ⊢ (2o ≺ ω → 2o ≼ ω) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ 2o ≼ ω |
13 | simp2 1128 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → ω ≼ 𝐴) | |
14 | domtr 8400 | . . . . . 6 ⊢ ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o ≼ 𝐴) | |
15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 2o ≼ 𝐴) |
16 | xpdom1g 8451 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
17 | 8, 15, 16 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
18 | domtr 8400 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) | |
19 | 7, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) |
20 | infxpidm2 9278 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
21 | 20 | 3adant3 1123 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
22 | domentr 8406 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) | |
23 | 19, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) |
24 | 2 | brrelex1i 5486 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
25 | 24 | 3ad2ant3 1126 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ V) |
26 | djudoml 9445 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | |
27 | 8, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
28 | sbth 8474 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵) ≈ 𝐴) | |
29 | 23, 27, 28 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1078 ∈ wcel 2079 Vcvv 3432 class class class wbr 4956 × cxp 5433 dom cdm 5435 ωcom 7427 2oc2o 7938 ≈ cen 8344 ≼ cdom 8345 ≺ csdm 8346 ⊔ cdju 9162 cardccrd 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-inf2 8939 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-oadd 7948 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-oi 8810 df-dju 9165 df-card 9203 |
This theorem is referenced by: infunabs 9464 infdju 9465 infdif 9466 |
Copyright terms: Public domain | W3C validator |