MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdjuabs Structured version   Visualization version   GIF version

Theorem infdjuabs 10245
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdjuabs ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdjuabs
StepHypRef Expression
1 simp3 1139 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
2 reldom 8991 . . . . . . 7 Rel ≼
32brrelex2i 5742 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
4 djudom2 10224 . . . . . 6 ((𝐵𝐴𝐴 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐴))
51, 3, 4syl2anc2 585 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐴))
6 xp2dju 10217 . . . . 5 (2o × 𝐴) = (𝐴𝐴)
75, 6breqtrrdi 5185 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (2o × 𝐴))
8 simp1 1137 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
9 2onn 8680 . . . . . . 7 2o ∈ ω
10 nnsdom 9694 . . . . . . 7 (2o ∈ ω → 2o ≺ ω)
11 sdomdom 9020 . . . . . . 7 (2o ≺ ω → 2o ≼ ω)
129, 10, 11mp2b 10 . . . . . 6 2o ≼ ω
13 simp2 1138 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
14 domtr 9047 . . . . . 6 ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o𝐴)
1512, 13, 14sylancr 587 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 2o𝐴)
16 xpdom1g 9109 . . . . 5 ((𝐴 ∈ dom card ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
178, 15, 16syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
18 domtr 9047 . . . 4 (((𝐴𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
197, 17, 18syl2anc 584 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
20 infxpidm2 10057 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
21203adant3 1133 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
22 domentr 9053 . . 3 (((𝐴𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴𝐵) ≼ 𝐴)
2319, 21, 22syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
242brrelex1i 5741 . . . 4 (𝐵𝐴𝐵 ∈ V)
25243ad2ant3 1136 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ V)
26 djudoml 10225 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴𝐵))
278, 25, 26syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
28 sbth 9133 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
2923, 27, 28syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  Vcvv 3480   class class class wbr 5143   × cxp 5683  dom cdm 5685  ωcom 7887  2oc2o 8500  cen 8982  cdom 8983  csdm 8984  cdju 9938  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-dju 9941  df-card 9979
This theorem is referenced by:  infunabs  10246  infdju  10247  infdif  10248
  Copyright terms: Public domain W3C validator