MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdjuabs Structured version   Visualization version   GIF version

Theorem infdjuabs 10165
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdjuabs ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdjuabs
StepHypRef Expression
1 simp3 1138 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
2 reldom 8927 . . . . . . 7 Rel ≼
32brrelex2i 5698 . . . . . 6 (𝐵𝐴𝐴 ∈ V)
4 djudom2 10144 . . . . . 6 ((𝐵𝐴𝐴 ∈ V) → (𝐴𝐵) ≼ (𝐴𝐴))
51, 3, 4syl2anc2 585 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐴))
6 xp2dju 10137 . . . . 5 (2o × 𝐴) = (𝐴𝐴)
75, 6breqtrrdi 5152 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (2o × 𝐴))
8 simp1 1136 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
9 2onn 8609 . . . . . . 7 2o ∈ ω
10 nnsdom 9614 . . . . . . 7 (2o ∈ ω → 2o ≺ ω)
11 sdomdom 8954 . . . . . . 7 (2o ≺ ω → 2o ≼ ω)
129, 10, 11mp2b 10 . . . . . 6 2o ≼ ω
13 simp2 1137 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
14 domtr 8981 . . . . . 6 ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o𝐴)
1512, 13, 14sylancr 587 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 2o𝐴)
16 xpdom1g 9043 . . . . 5 ((𝐴 ∈ dom card ∧ 2o𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
178, 15, 16syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴))
18 domtr 8981 . . . 4 (((𝐴𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
197, 17, 18syl2anc 584 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴 × 𝐴))
20 infxpidm2 9977 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
21203adant3 1132 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
22 domentr 8987 . . 3 (((𝐴𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴𝐵) ≼ 𝐴)
2319, 21, 22syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
242brrelex1i 5697 . . . 4 (𝐵𝐴𝐵 ∈ V)
25243ad2ant3 1135 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ V)
26 djudoml 10145 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴𝐵))
278, 25, 26syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
28 sbth 9067 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
2923, 27, 28syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  Vcvv 3450   class class class wbr 5110   × cxp 5639  dom cdm 5641  ωcom 7845  2oc2o 8431  cen 8918  cdom 8919  csdm 8920  cdju 9858  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-dju 9861  df-card 9899
This theorem is referenced by:  infunabs  10166  infdju  10167  infdif  10168
  Copyright terms: Public domain W3C validator