Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infdjuabs | Structured version Visualization version GIF version |
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infdjuabs | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
2 | reldom 8739 | . . . . . . 7 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5644 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
4 | djudom2 9939 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) | |
5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) |
6 | xp2dju 9932 | . . . . 5 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
7 | 5, 6 | breqtrrdi 5116 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (2o × 𝐴)) |
8 | simp1 1135 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ dom card) | |
9 | 2onn 8472 | . . . . . . 7 ⊢ 2o ∈ ω | |
10 | nnsdom 9412 | . . . . . . 7 ⊢ (2o ∈ ω → 2o ≺ ω) | |
11 | sdomdom 8768 | . . . . . . 7 ⊢ (2o ≺ ω → 2o ≼ ω) | |
12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ 2o ≼ ω |
13 | simp2 1136 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → ω ≼ 𝐴) | |
14 | domtr 8793 | . . . . . 6 ⊢ ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o ≼ 𝐴) | |
15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 2o ≼ 𝐴) |
16 | xpdom1g 8856 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
17 | 8, 15, 16 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
18 | domtr 8793 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) | |
19 | 7, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) |
20 | infxpidm2 9773 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
21 | 20 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
22 | domentr 8799 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) | |
23 | 19, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) |
24 | 2 | brrelex1i 5643 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
25 | 24 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ V) |
26 | djudoml 9940 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | |
27 | 8, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
28 | sbth 8880 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵) ≈ 𝐴) | |
29 | 23, 27, 28 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 × cxp 5587 dom cdm 5589 ωcom 7712 2oc2o 8291 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 ⊔ cdju 9656 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-dju 9659 df-card 9697 |
This theorem is referenced by: infunabs 9963 infdju 9964 infdif 9965 |
Copyright terms: Public domain | W3C validator |