| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdjuabs | Structured version Visualization version GIF version | ||
| Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infdjuabs | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
| 2 | reldom 8875 | . . . . . . 7 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5673 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
| 4 | djudom2 10072 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) | |
| 5 | 1, 3, 4 | syl2anc2 585 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ 𝐴)) |
| 6 | xp2dju 10065 | . . . . 5 ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | |
| 7 | 5, 6 | breqtrrdi 5133 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (2o × 𝐴)) |
| 8 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 9 | 2onn 8557 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 10 | nnsdom 9544 | . . . . . . 7 ⊢ (2o ∈ ω → 2o ≺ ω) | |
| 11 | sdomdom 8902 | . . . . . . 7 ⊢ (2o ≺ ω → 2o ≼ ω) | |
| 12 | 9, 10, 11 | mp2b 10 | . . . . . 6 ⊢ 2o ≼ ω |
| 13 | simp2 1137 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → ω ≼ 𝐴) | |
| 14 | domtr 8929 | . . . . . 6 ⊢ ((2o ≼ ω ∧ ω ≼ 𝐴) → 2o ≼ 𝐴) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 2o ≼ 𝐴) |
| 16 | xpdom1g 8987 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 2o ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 17 | 8, 15, 16 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (2o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 18 | domtr 8929 | . . . 4 ⊢ (((𝐴 ⊔ 𝐵) ≼ (2o × 𝐴) ∧ (2o × 𝐴) ≼ (𝐴 × 𝐴)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) | |
| 19 | 7, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴)) |
| 20 | infxpidm2 9905 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | |
| 21 | 20 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
| 22 | domentr 8935 | . . 3 ⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) | |
| 23 | 19, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝐴) |
| 24 | 2 | brrelex1i 5672 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
| 25 | 24 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ V) |
| 26 | djudoml 10073 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | |
| 27 | 8, 25, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
| 28 | sbth 9010 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵) ≈ 𝐴) | |
| 29 | 23, 27, 28 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 × cxp 5614 dom cdm 5616 ωcom 7796 2oc2o 8379 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 ⊔ cdju 9788 cardccrd 9825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-dju 9791 df-card 9829 |
| This theorem is referenced by: infunabs 10094 infdju 10095 infdif 10096 |
| Copyright terms: Public domain | W3C validator |