Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq1 5594 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: iunxpconst 5650 xpindi 5731 difxp2 6058 resdmres 6124 xpprsng 6994 curry2 7918 mapsnconst 8638 mapsncnv 8639 xp2dju 9863 pwdju1 9877 pwdjundom 10354 geomulcvg 15516 hofcl 17893 evlsval 21206 matvsca2 21485 ehl0 24486 ovoliunnul 24576 vitalilem5 24681 lgam1 26118 finxp2o 35497 finxp3o 35498 poimirlem3 35707 poimirlem5 35709 poimirlem10 35714 poimirlem22 35726 poimirlem23 35727 mendvscafval 40931 binomcxplemnn0 41856 itscnhlinecirc02plem3 46018 inlinecirc02p 46021 |
Copyright terms: Public domain | W3C validator |