![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq1 5714 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: iunxpconst 5772 xpindi 5858 difxp2 6197 resdmres 6263 xpprsng 7174 curry2 8148 mapsnconst 8950 mapsncnv 8951 xp2dju 10246 pwdju1 10260 pwdjundom 10736 geomulcvg 15924 hofcl 18329 evlsval 22133 matvsca2 22455 ehl0 25470 ovoliunnul 25561 vitalilem5 25666 lgam1 27125 finxp2o 37365 finxp3o 37366 poimirlem3 37583 poimirlem5 37585 poimirlem10 37590 poimirlem22 37602 poimirlem23 37603 mendvscafval 43147 binomcxplemnn0 44318 itscnhlinecirc02plem3 48518 inlinecirc02p 48521 |
Copyright terms: Public domain | W3C validator |