| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5645 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: iunxpconst 5704 xpindi 5787 difxp2 6127 resdmres 6193 xpprsng 7094 curry2 8063 mapsnconst 8842 mapsncnv 8843 xp2dju 10106 pwdju1 10120 pwdjundom 10596 geomulcvg 15818 hofcl 18196 evlsval 21969 matvsca2 22291 ehl0 25293 ovoliunnul 25384 vitalilem5 25489 lgam1 26950 iunxpssiun1 32470 finxp2o 37360 finxp3o 37361 poimirlem3 37590 poimirlem5 37592 poimirlem10 37597 poimirlem22 37609 poimirlem23 37610 mendvscafval 43148 binomcxplemnn0 44311 itscnhlinecirc02plem3 48746 inlinecirc02p 48749 |
| Copyright terms: Public domain | W3C validator |