| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5625 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: iunxpconst 5684 xpindi 5768 difxp2 6108 resdmres 6174 xpprsng 7068 curry2 8032 mapsnconst 8811 mapsncnv 8812 xp2dju 10063 pwdju1 10077 pwdjundom 10553 geomulcvg 15778 hofcl 18160 evlsval 22016 matvsca2 22338 ehl0 25339 ovoliunnul 25430 vitalilem5 25535 lgam1 26996 iunxpssiun1 32540 finxp2o 37433 finxp3o 37434 poimirlem3 37663 poimirlem5 37665 poimirlem10 37670 poimirlem22 37682 poimirlem23 37683 mendvscafval 43219 binomcxplemnn0 44382 itscnhlinecirc02plem3 48816 inlinecirc02p 48819 |
| Copyright terms: Public domain | W3C validator |