| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5635 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: iunxpconst 5694 xpindi 5779 difxp2 6121 resdmres 6187 xpprsng 7082 curry2 8046 mapsnconst 8826 mapsncnv 8827 xp2dju 10079 pwdju1 10093 pwdjundom 10569 geomulcvg 15790 hofcl 18173 evlsval 22032 matvsca2 22363 ehl0 25364 ovoliunnul 25455 vitalilem5 25560 lgam1 27021 iunxpssiun1 32569 indconst0 32867 indconst1 32868 finxp2o 37516 finxp3o 37517 poimirlem3 37736 poimirlem5 37738 poimirlem10 37743 poimirlem22 37755 poimirlem23 37756 mendvscafval 43343 binomcxplemnn0 44506 itscnhlinecirc02plem3 48946 inlinecirc02p 48949 |
| Copyright terms: Public domain | W3C validator |