MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq1i Structured version   Visualization version   GIF version

Theorem xpeq1i 5685
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
xpeq1i (𝐴 × 𝐶) = (𝐵 × 𝐶)

Proof of Theorem xpeq1i
StepHypRef Expression
1 xpeq1i.1 . 2 𝐴 = 𝐵
2 xpeq1 5673 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
31, 2ax-mp 5 1 (𝐴 × 𝐶) = (𝐵 × 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-opab 5187  df-xp 5665
This theorem is referenced by:  iunxpconst  5732  xpindi  5818  difxp2  6160  resdmres  6226  xpprsng  7135  curry2  8111  mapsnconst  8911  mapsncnv  8912  xp2dju  10196  pwdju1  10210  pwdjundom  10686  geomulcvg  15897  hofcl  18276  evlsval  22049  matvsca2  22371  ehl0  25374  ovoliunnul  25465  vitalilem5  25570  lgam1  27031  iunxpssiun1  32554  finxp2o  37422  finxp3o  37423  poimirlem3  37652  poimirlem5  37654  poimirlem10  37659  poimirlem22  37671  poimirlem23  37672  mendvscafval  43177  binomcxplemnn0  44340  itscnhlinecirc02plem3  48731  inlinecirc02p  48734
  Copyright terms: Public domain W3C validator