![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq1 5703 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-opab 5211 df-xp 5695 |
This theorem is referenced by: iunxpconst 5761 xpindi 5847 difxp2 6188 resdmres 6254 xpprsng 7160 curry2 8131 mapsnconst 8931 mapsncnv 8932 xp2dju 10215 pwdju1 10229 pwdjundom 10705 geomulcvg 15909 hofcl 18316 evlsval 22128 matvsca2 22450 ehl0 25465 ovoliunnul 25556 vitalilem5 25661 lgam1 27122 finxp2o 37382 finxp3o 37383 poimirlem3 37610 poimirlem5 37612 poimirlem10 37617 poimirlem22 37629 poimirlem23 37630 mendvscafval 43175 binomcxplemnn0 44345 itscnhlinecirc02plem3 48634 inlinecirc02p 48637 |
Copyright terms: Public domain | W3C validator |