![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq1 5326 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 × cxp 5310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-opab 4906 df-xp 5318 |
This theorem is referenced by: iunxpconst 5378 xpindi 5459 difxp2 5777 resdmres 5844 curry2 7509 mapsnconst 8143 mapsncnv 8144 cda1dif 9286 cdaassen 9292 infcda1 9303 geomulcvg 14945 hofcl 17214 evlsval 19841 matvsca2 20559 ovoliunnul 23615 vitalilem5 23720 lgam1 25142 finxp2o 33734 finxp3o 33735 poimirlem3 33901 poimirlem5 33903 poimirlem10 33908 poimirlem22 33920 poimirlem23 33921 mendvscafval 38545 binomcxplemnn0 39330 xpprsng 42909 |
Copyright terms: Public domain | W3C validator |