| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5655 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: iunxpconst 5714 xpindi 5800 difxp2 6142 resdmres 6208 xpprsng 7115 curry2 8089 mapsnconst 8868 mapsncnv 8869 xp2dju 10137 pwdju1 10151 pwdjundom 10627 geomulcvg 15849 hofcl 18227 evlsval 22000 matvsca2 22322 ehl0 25324 ovoliunnul 25415 vitalilem5 25520 lgam1 26981 iunxpssiun1 32504 finxp2o 37394 finxp3o 37395 poimirlem3 37624 poimirlem5 37626 poimirlem10 37631 poimirlem22 37643 poimirlem23 37644 mendvscafval 43182 binomcxplemnn0 44345 itscnhlinecirc02plem3 48777 inlinecirc02p 48780 |
| Copyright terms: Public domain | W3C validator |