![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq1 5680 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 × cxp 5664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-opab 5201 df-xp 5672 |
This theorem is referenced by: iunxpconst 5738 xpindi 5823 difxp2 6155 resdmres 6221 xpprsng 7130 curry2 8087 mapsnconst 8882 mapsncnv 8883 xp2dju 10167 pwdju1 10181 pwdjundom 10658 geomulcvg 15819 hofcl 18214 evlsval 21959 matvsca2 22252 ehl0 25267 ovoliunnul 25358 vitalilem5 25463 lgam1 26912 finxp2o 36770 finxp3o 36771 poimirlem3 36981 poimirlem5 36983 poimirlem10 36988 poimirlem22 37000 poimirlem23 37001 mendvscafval 42421 binomcxplemnn0 43597 itscnhlinecirc02plem3 47658 inlinecirc02p 47661 |
Copyright terms: Public domain | W3C validator |