| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5652 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: iunxpconst 5711 xpindi 5797 difxp2 6139 resdmres 6205 xpprsng 7112 curry2 8086 mapsnconst 8865 mapsncnv 8866 xp2dju 10130 pwdju1 10144 pwdjundom 10620 geomulcvg 15842 hofcl 18220 evlsval 21993 matvsca2 22315 ehl0 25317 ovoliunnul 25408 vitalilem5 25513 lgam1 26974 iunxpssiun1 32497 finxp2o 37387 finxp3o 37388 poimirlem3 37617 poimirlem5 37619 poimirlem10 37624 poimirlem22 37636 poimirlem23 37637 mendvscafval 43175 binomcxplemnn0 44338 itscnhlinecirc02plem3 48773 inlinecirc02p 48776 |
| Copyright terms: Public domain | W3C validator |