| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5637 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: iunxpconst 5696 xpindi 5780 difxp2 6119 resdmres 6185 xpprsng 7078 curry2 8047 mapsnconst 8826 mapsncnv 8827 xp2dju 10090 pwdju1 10104 pwdjundom 10580 geomulcvg 15802 hofcl 18184 evlsval 22010 matvsca2 22332 ehl0 25334 ovoliunnul 25425 vitalilem5 25530 lgam1 26991 iunxpssiun1 32531 finxp2o 37392 finxp3o 37393 poimirlem3 37622 poimirlem5 37624 poimirlem10 37629 poimirlem22 37641 poimirlem23 37642 mendvscafval 43179 binomcxplemnn0 44342 itscnhlinecirc02plem3 48789 inlinecirc02p 48792 |
| Copyright terms: Public domain | W3C validator |