| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq1i | ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq1 5673 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 × 𝐶) = (𝐵 × 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: iunxpconst 5732 xpindi 5818 difxp2 6160 resdmres 6226 xpprsng 7135 curry2 8111 mapsnconst 8911 mapsncnv 8912 xp2dju 10196 pwdju1 10210 pwdjundom 10686 geomulcvg 15897 hofcl 18276 evlsval 22049 matvsca2 22371 ehl0 25374 ovoliunnul 25465 vitalilem5 25570 lgam1 27031 iunxpssiun1 32554 finxp2o 37422 finxp3o 37423 poimirlem3 37652 poimirlem5 37654 poimirlem10 37659 poimirlem22 37671 poimirlem23 37672 mendvscafval 43177 binomcxplemnn0 44340 itscnhlinecirc02plem3 48731 inlinecirc02p 48734 |
| Copyright terms: Public domain | W3C validator |