![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xptrrel | Structured version Visualization version GIF version |
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
xptrrel | ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4026 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵) | |
2 | dmxpss 5780 | . . . . . . . 8 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
3 | 1, 2 | sstri 3805 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴 |
4 | inss2 4027 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) | |
5 | rnxpss 5781 | . . . . . . . 8 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
6 | 4, 5 | sstri 3805 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵 |
7 | 3, 6 | ssini 4029 | . . . . . 6 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴 ∩ 𝐵) |
8 | eqimss 3851 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
9 | 7, 8 | syl5ss 3807 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅) |
10 | ss0 4168 | . . . . 5 ⊢ ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) |
12 | 11 | coemptyd 14057 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅) |
13 | 0ss 4166 | . . 3 ⊢ ∅ ⊆ (𝐴 × 𝐵) | |
14 | 12, 13 | syl6eqss 3849 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
15 | df-ne 2970 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ¬ (𝐴 ∩ 𝐵) = ∅) | |
16 | 15 | biimpri 220 | . . . 4 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ≠ ∅) |
17 | 16 | xpcoidgend 14053 | . . 3 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
18 | ssid 3817 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵) | |
19 | 17, 18 | syl6eqss 3849 | . 2 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
20 | 14, 19 | pm2.61i 177 | 1 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1653 ≠ wne 2969 ∩ cin 3766 ⊆ wss 3767 ∅c0 4113 × cxp 5308 dom cdm 5310 ran crn 5311 ∘ ccom 5314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 |
This theorem is referenced by: trclublem 14073 trclubgNEW 38695 trclexi 38697 cnvtrcl0 38703 xpintrreld 38728 trrelsuperreldg 38730 trrelsuperrel2dg 38733 |
Copyright terms: Public domain | W3C validator |