| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xptrrel | Structured version Visualization version GIF version | ||
| Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xptrrel | ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4237 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵) | |
| 2 | dmxpss 6191 | . . . . . . . 8 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
| 3 | 1, 2 | sstri 3993 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴 |
| 4 | inss2 4238 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) | |
| 5 | rnxpss 6192 | . . . . . . . 8 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 6 | 4, 5 | sstri 3993 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵 |
| 7 | 3, 6 | ssini 4240 | . . . . . 6 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴 ∩ 𝐵) |
| 8 | eqimss 4042 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
| 9 | 7, 8 | sstrid 3995 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅) |
| 10 | ss0 4402 | . . . . 5 ⊢ ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) |
| 12 | 11 | coemptyd 15018 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅) |
| 13 | 0ss 4400 | . . 3 ⊢ ∅ ⊆ (𝐴 × 𝐵) | |
| 14 | 12, 13 | eqsstrdi 4028 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 15 | neqne 2948 | . . . 4 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ≠ ∅) | |
| 16 | 15 | xpcoidgend 15014 | . . 3 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| 17 | ssid 4006 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵) | |
| 18 | 16, 17 | eqsstrdi 4028 | . 2 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 19 | 14, 18 | pm2.61i 182 | 1 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 × cxp 5683 dom cdm 5685 ran crn 5686 ∘ ccom 5689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 |
| This theorem is referenced by: trclublem 15034 trclubgNEW 43631 trclexi 43633 cnvtrcl0 43639 xpintrreld 43679 trrelsuperreldg 43681 trrelsuperrel2dg 43684 |
| Copyright terms: Public domain | W3C validator |