| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xptrrel | Structured version Visualization version GIF version | ||
| Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xptrrel | ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4185 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵) | |
| 2 | dmxpss 6115 | . . . . . . . 8 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
| 3 | 1, 2 | sstri 3942 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴 |
| 4 | inss2 4186 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) | |
| 5 | rnxpss 6116 | . . . . . . . 8 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 6 | 4, 5 | sstri 3942 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵 |
| 7 | 3, 6 | ssini 4188 | . . . . . 6 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴 ∩ 𝐵) |
| 8 | eqimss 3991 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
| 9 | 7, 8 | sstrid 3944 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅) |
| 10 | ss0 4350 | . . . . 5 ⊢ ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) |
| 12 | 11 | coemptyd 14878 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅) |
| 13 | 0ss 4348 | . . 3 ⊢ ∅ ⊆ (𝐴 × 𝐵) | |
| 14 | 12, 13 | eqsstrdi 3977 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 15 | neqne 2934 | . . . 4 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ≠ ∅) | |
| 16 | 15 | xpcoidgend 14874 | . . 3 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| 17 | ssid 3955 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵) | |
| 18 | 16, 17 | eqsstrdi 3977 | . 2 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 19 | 14, 18 | pm2.61i 182 | 1 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 × cxp 5612 dom cdm 5614 ran crn 5615 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 |
| This theorem is referenced by: trclublem 14894 trclubgNEW 43630 trclexi 43632 cnvtrcl0 43638 xpintrreld 43678 trrelsuperreldg 43680 trrelsuperrel2dg 43683 |
| Copyright terms: Public domain | W3C validator |