| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xptrrel | Structured version Visualization version GIF version | ||
| Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xptrrel | ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4190 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵) | |
| 2 | dmxpss 6124 | . . . . . . . 8 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
| 3 | 1, 2 | sstri 3947 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴 |
| 4 | inss2 4191 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) | |
| 5 | rnxpss 6125 | . . . . . . . 8 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 6 | 4, 5 | sstri 3947 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵 |
| 7 | 3, 6 | ssini 4193 | . . . . . 6 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴 ∩ 𝐵) |
| 8 | eqimss 3996 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
| 9 | 7, 8 | sstrid 3949 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅) |
| 10 | ss0 4355 | . . . . 5 ⊢ ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) |
| 12 | 11 | coemptyd 14904 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅) |
| 13 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ (𝐴 × 𝐵) | |
| 14 | 12, 13 | eqsstrdi 3982 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 15 | neqne 2933 | . . . 4 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ≠ ∅) | |
| 16 | 15 | xpcoidgend 14900 | . . 3 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
| 17 | ssid 3960 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵) | |
| 18 | 16, 17 | eqsstrdi 3982 | . 2 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 19 | 14, 18 | pm2.61i 182 | 1 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 × cxp 5621 dom cdm 5623 ran crn 5624 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 |
| This theorem is referenced by: trclublem 14920 trclubgNEW 43591 trclexi 43593 cnvtrcl0 43599 xpintrreld 43639 trrelsuperreldg 43641 trrelsuperrel2dg 43644 |
| Copyright terms: Public domain | W3C validator |