![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xptrrel | Structured version Visualization version GIF version |
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
xptrrel | ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4224 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵) | |
2 | dmxpss 6169 | . . . . . . . 8 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
3 | 1, 2 | sstri 3987 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴 |
4 | inss2 4225 | . . . . . . . 8 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) | |
5 | rnxpss 6170 | . . . . . . . 8 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
6 | 4, 5 | sstri 3987 | . . . . . . 7 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵 |
7 | 3, 6 | ssini 4227 | . . . . . 6 ⊢ (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴 ∩ 𝐵) |
8 | eqimss 4036 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ⊆ ∅) | |
9 | 7, 8 | sstrid 3989 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅) |
10 | ss0 4394 | . . . . 5 ⊢ ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅) |
12 | 11 | coemptyd 14952 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅) |
13 | 0ss 4392 | . . 3 ⊢ ∅ ⊆ (𝐴 × 𝐵) | |
14 | 12, 13 | eqsstrdi 4032 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
15 | neqne 2944 | . . . 4 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ 𝐵) ≠ ∅) | |
16 | 15 | xpcoidgend 14948 | . . 3 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
17 | ssid 4000 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵) | |
18 | 16, 17 | eqsstrdi 4032 | . 2 ⊢ (¬ (𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
19 | 14, 18 | pm2.61i 182 | 1 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∩ cin 3944 ⊆ wss 3945 ∅c0 4318 × cxp 5670 dom cdm 5672 ran crn 5673 ∘ ccom 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 |
This theorem is referenced by: trclublem 14968 trclubgNEW 43042 trclexi 43044 cnvtrcl0 43050 xpintrreld 43090 trrelsuperreldg 43092 trrelsuperrel2dg 43095 |
Copyright terms: Public domain | W3C validator |