MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xptrrel Structured version   Visualization version   GIF version

Theorem xptrrel 14926
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
xptrrel ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)

Proof of Theorem xptrrel
StepHypRef Expression
1 inss1 4228 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵)
2 dmxpss 6170 . . . . . . . 8 dom (𝐴 × 𝐵) ⊆ 𝐴
31, 2sstri 3991 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴
4 inss2 4229 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
5 rnxpss 6171 . . . . . . . 8 ran (𝐴 × 𝐵) ⊆ 𝐵
64, 5sstri 3991 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵
73, 6ssini 4231 . . . . . 6 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴𝐵)
8 eqimss 4040 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐴𝐵) ⊆ ∅)
97, 8sstrid 3993 . . . . 5 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅)
10 ss0 4398 . . . . 5 ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
119, 10syl 17 . . . 4 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
1211coemptyd 14925 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅)
13 0ss 4396 . . 3 ∅ ⊆ (𝐴 × 𝐵)
1412, 13eqsstrdi 4036 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
15 neqne 2948 . . . 4 (¬ (𝐴𝐵) = ∅ → (𝐴𝐵) ≠ ∅)
1615xpcoidgend 14921 . . 3 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
17 ssid 4004 . . 3 (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵)
1816, 17eqsstrdi 4036 . 2 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
1914, 18pm2.61i 182 1 ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  cin 3947  wss 3948  c0 4322   × cxp 5674  dom cdm 5676  ran crn 5677  ccom 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688
This theorem is referenced by:  trclublem  14941  trclubgNEW  42359  trclexi  42361  cnvtrcl0  42367  xpintrreld  42407  trrelsuperreldg  42409  trrelsuperrel2dg  42412
  Copyright terms: Public domain W3C validator