MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xptrrel Structured version   Visualization version   GIF version

Theorem xptrrel 14946
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
xptrrel ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)

Proof of Theorem xptrrel
StepHypRef Expression
1 inss1 4200 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵)
2 dmxpss 6144 . . . . . . . 8 dom (𝐴 × 𝐵) ⊆ 𝐴
31, 2sstri 3956 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴
4 inss2 4201 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
5 rnxpss 6145 . . . . . . . 8 ran (𝐴 × 𝐵) ⊆ 𝐵
64, 5sstri 3956 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵
73, 6ssini 4203 . . . . . 6 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴𝐵)
8 eqimss 4005 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐴𝐵) ⊆ ∅)
97, 8sstrid 3958 . . . . 5 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅)
10 ss0 4365 . . . . 5 ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
119, 10syl 17 . . . 4 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
1211coemptyd 14945 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅)
13 0ss 4363 . . 3 ∅ ⊆ (𝐴 × 𝐵)
1412, 13eqsstrdi 3991 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
15 neqne 2933 . . . 4 (¬ (𝐴𝐵) = ∅ → (𝐴𝐵) ≠ ∅)
1615xpcoidgend 14941 . . 3 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
17 ssid 3969 . . 3 (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵)
1816, 17eqsstrdi 3991 . 2 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
1914, 18pm2.61i 182 1 ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  cin 3913  wss 3914  c0 4296   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  trclublem  14961  trclubgNEW  43607  trclexi  43609  cnvtrcl0  43615  xpintrreld  43655  trrelsuperreldg  43657  trrelsuperrel2dg  43660
  Copyright terms: Public domain W3C validator