MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xptrrel Structured version   Visualization version   GIF version

Theorem xptrrel 14619
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
xptrrel ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)

Proof of Theorem xptrrel
StepHypRef Expression
1 inss1 4159 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ dom (𝐴 × 𝐵)
2 dmxpss 6063 . . . . . . . 8 dom (𝐴 × 𝐵) ⊆ 𝐴
31, 2sstri 3926 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐴
4 inss2 4160 . . . . . . . 8 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
5 rnxpss 6064 . . . . . . . 8 ran (𝐴 × 𝐵) ⊆ 𝐵
64, 5sstri 3926 . . . . . . 7 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ 𝐵
73, 6ssini 4162 . . . . . 6 (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ (𝐴𝐵)
8 eqimss 3973 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐴𝐵) ⊆ ∅)
97, 8sstrid 3928 . . . . 5 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅)
10 ss0 4329 . . . . 5 ((dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) ⊆ ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
119, 10syl 17 . . . 4 ((𝐴𝐵) = ∅ → (dom (𝐴 × 𝐵) ∩ ran (𝐴 × 𝐵)) = ∅)
1211coemptyd 14618 . . 3 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = ∅)
13 0ss 4327 . . 3 ∅ ⊆ (𝐴 × 𝐵)
1412, 13eqsstrdi 3971 . 2 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
15 neqne 2950 . . . 4 (¬ (𝐴𝐵) = ∅ → (𝐴𝐵) ≠ ∅)
1615xpcoidgend 14614 . . 3 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
17 ssid 3939 . . 3 (𝐴 × 𝐵) ⊆ (𝐴 × 𝐵)
1816, 17eqsstrdi 3971 . 2 (¬ (𝐴𝐵) = ∅ → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
1914, 18pm2.61i 182 1 ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  cin 3882  wss 3883  c0 4253   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by:  trclublem  14634  trclubgNEW  41115  trclexi  41117  cnvtrcl0  41123  xpintrreld  41163  trrelsuperreldg  41165  trrelsuperrel2dg  41168
  Copyright terms: Public domain W3C validator