Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpnnidm Structured version   Visualization version   GIF version

Theorem relexpxpnnidm 42454
Description: Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpnnidm (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))

Proof of Theorem relexpxpnnidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7417 . . . 4 (𝑥 = 1 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟1))
21eqeq1d 2735 . . 3 (𝑥 = 1 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)))
32imbi2d 341 . 2 (𝑥 = 1 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))))
4 oveq2 7417 . . . 4 (𝑥 = 𝑦 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑦))
54eqeq1d 2735 . . 3 (𝑥 = 𝑦 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)))
65imbi2d 341 . 2 (𝑥 = 𝑦 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))))
7 oveq2 7417 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)))
87eqeq1d 2735 . . 3 (𝑥 = (𝑦 + 1) → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))
98imbi2d 341 . 2 (𝑥 = (𝑦 + 1) → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
10 oveq2 7417 . . . 4 (𝑥 = 𝑁 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑁))
1110eqeq1d 2735 . . 3 (𝑥 = 𝑁 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
1211imbi2d 341 . 2 (𝑥 = 𝑁 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))))
13 3simpa 1149 . . 3 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝑈𝐵𝑉))
14 xpexg 7737 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
15 relexp1g 14973 . . 3 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
1613, 14, 153syl 18 . 2 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
17 simp2 1138 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅))
1817, 13, 143syl 18 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ V)
19 simp1 1137 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → 𝑦 ∈ ℕ)
20 relexpsucnnr 14972 . . . . . 6 (((𝐴 × 𝐵) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
2118, 19, 20syl2anc 585 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
22 simp3 1139 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))
2322coeq1d 5862 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)) = ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)))
24 simp23 1209 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝐵) ≠ ∅)
2524xpcoidgend 14922 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
2621, 23, 253eqtrd 2777 . . . 4 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))
27263exp 1120 . . 3 (𝑦 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
2827a2d 29 . 2 (𝑦 ∈ ℕ → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
293, 6, 9, 12, 16, 28nnind 12230 1 (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  cin 3948  c0 4323   × cxp 5675  ccom 5681  (class class class)co 7409  1c1 11111   + caddc 11113  cn 12212  𝑟crelexp 14966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-seq 13967  df-relexp 14967
This theorem is referenced by:  relexpxpmin  42468
  Copyright terms: Public domain W3C validator