Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpnnidm Structured version   Visualization version   GIF version

Theorem relexpxpnnidm 43194
Description: Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpnnidm (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))

Proof of Theorem relexpxpnnidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7421 . . . 4 (𝑥 = 1 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟1))
21eqeq1d 2727 . . 3 (𝑥 = 1 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)))
32imbi2d 339 . 2 (𝑥 = 1 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))))
4 oveq2 7421 . . . 4 (𝑥 = 𝑦 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑦))
54eqeq1d 2727 . . 3 (𝑥 = 𝑦 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)))
65imbi2d 339 . 2 (𝑥 = 𝑦 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))))
7 oveq2 7421 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)))
87eqeq1d 2727 . . 3 (𝑥 = (𝑦 + 1) → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))
98imbi2d 339 . 2 (𝑥 = (𝑦 + 1) → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
10 oveq2 7421 . . . 4 (𝑥 = 𝑁 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑁))
1110eqeq1d 2727 . . 3 (𝑥 = 𝑁 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
1211imbi2d 339 . 2 (𝑥 = 𝑁 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))))
13 3simpa 1145 . . 3 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝑈𝐵𝑉))
14 xpexg 7747 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
15 relexp1g 15000 . . 3 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
1613, 14, 153syl 18 . 2 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
17 simp2 1134 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅))
1817, 13, 143syl 18 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ V)
19 simp1 1133 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → 𝑦 ∈ ℕ)
20 relexpsucnnr 14999 . . . . . 6 (((𝐴 × 𝐵) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
2118, 19, 20syl2anc 582 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
22 simp3 1135 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))
2322coeq1d 5859 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)) = ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)))
24 simp23 1205 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝐵) ≠ ∅)
2524xpcoidgend 14949 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
2621, 23, 253eqtrd 2769 . . . 4 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))
27263exp 1116 . . 3 (𝑦 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
2827a2d 29 . 2 (𝑦 ∈ ℕ → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
293, 6, 9, 12, 16, 28nnind 12255 1 (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  cin 3940  c0 4319   × cxp 5671  ccom 5677  (class class class)co 7413  1c1 11134   + caddc 11136  cn 12237  𝑟crelexp 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-seq 13994  df-relexp 14994
This theorem is referenced by:  relexpxpmin  43208
  Copyright terms: Public domain W3C validator