Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpnnidm Structured version   Visualization version   GIF version

Theorem relexpxpnnidm 43692
Description: Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpnnidm (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))

Proof of Theorem relexpxpnnidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . 4 (𝑥 = 1 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟1))
21eqeq1d 2731 . . 3 (𝑥 = 1 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)))
32imbi2d 340 . 2 (𝑥 = 1 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))))
4 oveq2 7395 . . . 4 (𝑥 = 𝑦 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑦))
54eqeq1d 2731 . . 3 (𝑥 = 𝑦 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)))
65imbi2d 340 . 2 (𝑥 = 𝑦 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))))
7 oveq2 7395 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)))
87eqeq1d 2731 . . 3 (𝑥 = (𝑦 + 1) → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))
98imbi2d 340 . 2 (𝑥 = (𝑦 + 1) → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
10 oveq2 7395 . . . 4 (𝑥 = 𝑁 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑁))
1110eqeq1d 2731 . . 3 (𝑥 = 𝑁 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
1211imbi2d 340 . 2 (𝑥 = 𝑁 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))))
13 3simpa 1148 . . 3 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝑈𝐵𝑉))
14 xpexg 7726 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
15 relexp1g 14992 . . 3 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
1613, 14, 153syl 18 . 2 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
17 simp2 1137 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅))
1817, 13, 143syl 18 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ V)
19 simp1 1136 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → 𝑦 ∈ ℕ)
20 relexpsucnnr 14991 . . . . . 6 (((𝐴 × 𝐵) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
2118, 19, 20syl2anc 584 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
22 simp3 1138 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))
2322coeq1d 5825 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)) = ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)))
24 simp23 1209 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝐵) ≠ ∅)
2524xpcoidgend 14941 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
2621, 23, 253eqtrd 2768 . . . 4 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))
27263exp 1119 . . 3 (𝑦 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
2827a2d 29 . 2 (𝑦 ∈ ℕ → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
293, 6, 9, 12, 16, 28nnind 12204 1 (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cin 3913  c0 4296   × cxp 5636  ccom 5642  (class class class)co 7387  1c1 11069   + caddc 11071  cn 12186  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-relexp 14986
This theorem is referenced by:  relexpxpmin  43706
  Copyright terms: Public domain W3C validator