Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpnnidm Structured version   Visualization version   GIF version

Theorem relexpxpnnidm 43056
Description: Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpnnidm (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))

Proof of Theorem relexpxpnnidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7422 . . . 4 (𝑥 = 1 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟1))
21eqeq1d 2729 . . 3 (𝑥 = 1 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)))
32imbi2d 340 . 2 (𝑥 = 1 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))))
4 oveq2 7422 . . . 4 (𝑥 = 𝑦 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑦))
54eqeq1d 2729 . . 3 (𝑥 = 𝑦 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)))
65imbi2d 340 . 2 (𝑥 = 𝑦 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))))
7 oveq2 7422 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)))
87eqeq1d 2729 . . 3 (𝑥 = (𝑦 + 1) → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))
98imbi2d 340 . 2 (𝑥 = (𝑦 + 1) → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
10 oveq2 7422 . . . 4 (𝑥 = 𝑁 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑁))
1110eqeq1d 2729 . . 3 (𝑥 = 𝑁 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
1211imbi2d 340 . 2 (𝑥 = 𝑁 → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))))
13 3simpa 1146 . . 3 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝑈𝐵𝑉))
14 xpexg 7746 . . 3 ((𝐴𝑈𝐵𝑉) → (𝐴 × 𝐵) ∈ V)
15 relexp1g 14997 . . 3 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
1613, 14, 153syl 18 . 2 ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))
17 simp2 1135 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅))
1817, 13, 143syl 18 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ V)
19 simp1 1134 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → 𝑦 ∈ ℕ)
20 relexpsucnnr 14996 . . . . . 6 (((𝐴 × 𝐵) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
2118, 19, 20syl2anc 583 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)))
22 simp3 1136 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))
2322coeq1d 5858 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)) = ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)))
24 simp23 1206 . . . . . 6 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴𝐵) ≠ ∅)
2524xpcoidgend 14946 . . . . 5 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
2621, 23, 253eqtrd 2771 . . . 4 ((𝑦 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))
27263exp 1117 . . 3 (𝑦 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
2827a2d 29 . 2 (𝑦 ∈ ℕ → (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))))
293, 6, 9, 12, 16, 28nnind 12252 1 (𝑁 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  cin 3943  c0 4318   × cxp 5670  ccom 5676  (class class class)co 7414  1c1 11131   + caddc 11133  cn 12234  𝑟crelexp 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-seq 13991  df-relexp 14991
This theorem is referenced by:  relexpxpmin  43070
  Copyright terms: Public domain W3C validator