Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 1 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟1)) |
2 | 1 | eqeq1d 2740 |
. . 3
⊢ (𝑥 = 1 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵))) |
3 | 2 | imbi2d 341 |
. 2
⊢ (𝑥 = 1 → (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)))) |
4 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑦)) |
5 | 4 | eqeq1d 2740 |
. . 3
⊢ (𝑥 = 𝑦 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵))) |
6 | 5 | imbi2d 341 |
. 2
⊢ (𝑥 = 𝑦 → (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)))) |
7 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟(𝑦 + 1))) |
8 | 7 | eqeq1d 2740 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵))) |
9 | 8 | imbi2d 341 |
. 2
⊢ (𝑥 = (𝑦 + 1) → (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))) |
10 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝐴 × 𝐵)↑𝑟𝑥) = ((𝐴 × 𝐵)↑𝑟𝑁)) |
11 | 10 | eqeq1d 2740 |
. . 3
⊢ (𝑥 = 𝑁 → (((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵) ↔ ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) |
12 | 11 | imbi2d 341 |
. 2
⊢ (𝑥 = 𝑁 → (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑥) = (𝐴 × 𝐵)) ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵)))) |
13 | | 3simpa 1147 |
. . 3
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) |
14 | | xpexg 7600 |
. . 3
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (𝐴 × 𝐵) ∈ V) |
15 | | relexp1g 14737 |
. . 3
⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)) |
16 | 13, 14, 15 | 3syl 18 |
. 2
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟1) = (𝐴 × 𝐵)) |
17 | | simp2 1136 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) |
18 | 17, 13, 14 | 3syl 18 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 × 𝐵) ∈ V) |
19 | | simp1 1135 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → 𝑦 ∈ ℕ) |
20 | | relexpsucnnr 14736 |
. . . . . 6
⊢ (((𝐴 × 𝐵) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵))) |
21 | 18, 19, 20 | syl2anc 584 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵))) |
22 | | simp3 1137 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) |
23 | 22 | coeq1d 5770 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (((𝐴 × 𝐵)↑𝑟𝑦) ∘ (𝐴 × 𝐵)) = ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵))) |
24 | | simp23 1207 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → (𝐴 ∩ 𝐵) ≠ ∅) |
25 | 24 | xpcoidgend 14686 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵)) |
26 | 21, 23, 25 | 3eqtrd 2782 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)) |
27 | 26 | 3exp 1118 |
. . 3
⊢ (𝑦 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))) |
28 | 27 | a2d 29 |
. 2
⊢ (𝑦 ∈ ℕ → (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑦) = (𝐴 × 𝐵)) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟(𝑦 + 1)) = (𝐴 × 𝐵)))) |
29 | 3, 6, 9, 12, 16, 28 | nnind 11991 |
1
⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) |