Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpdisjres Structured version   Visualization version   GIF version

Theorem xpdisjres 30356
 Description: Restriction of a constant function (or other Cartesian product) outside of its domain. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
xpdisjres ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) ↾ 𝐶) = ∅)

Proof of Theorem xpdisjres
StepHypRef Expression
1 df-res 5544 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 xpdisj1 5996 . 2 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ∅)
31, 2syl5eq 2869 1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) ↾ 𝐶) = ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  Vcvv 3469   ∩ cin 3907  ∅c0 4265   × cxp 5530   ↾ cres 5534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-rab 3139  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-opab 5105  df-xp 5538  df-rel 5539  df-res 5544 This theorem is referenced by:  padct  30465
 Copyright terms: Public domain W3C validator