| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdisj1 | Structured version Visualization version GIF version | ||
| Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpdisj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5635 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) = (∅ × (𝐶 ∩ 𝐷))) | |
| 2 | inxp 5777 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) | |
| 3 | 0xp 5720 | . . 3 ⊢ (∅ × (𝐶 ∩ 𝐷)) = ∅ | |
| 4 | 3 | eqcomi 2742 | . 2 ⊢ ∅ = (∅ × (𝐶 ∩ 𝐷)) |
| 5 | 1, 2, 4 | 3eqtr4g 2793 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ∅c0 4282 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: djudisj 6122 xp01disjl 8416 djuin 9822 nosupbnd2lem1 27674 noetasuplem3 27694 noetasuplem4 27695 xpdisjres 32599 esum2dlem 34177 disjxp1 45230 |
| Copyright terms: Public domain | W3C validator |