MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdisj1 Structured version   Visualization version   GIF version

Theorem xpdisj1 6134
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj1 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)

Proof of Theorem xpdisj1
StepHypRef Expression
1 xpeq1 5652 . 2 ((𝐴𝐵) = ∅ → ((𝐴𝐵) × (𝐶𝐷)) = (∅ × (𝐶𝐷)))
2 inxp 5795 . 2 ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴𝐵) × (𝐶𝐷))
3 0xp 5737 . . 3 (∅ × (𝐶𝐷)) = ∅
43eqcomi 2738 . 2 ∅ = (∅ × (𝐶𝐷))
51, 2, 43eqtr4g 2789 1 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  c0 4296   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  djudisj  6140  xp01disjl  8456  djuin  9871  nosupbnd2lem1  27627  noetasuplem3  27647  noetasuplem4  27648  xpdisjres  32527  esum2dlem  34082  disjxp1  45063
  Copyright terms: Public domain W3C validator