| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdisj1 | Structured version Visualization version GIF version | ||
| Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpdisj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5668 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) = (∅ × (𝐶 ∩ 𝐷))) | |
| 2 | inxp 5811 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) | |
| 3 | 0xp 5753 | . . 3 ⊢ (∅ × (𝐶 ∩ 𝐷)) = ∅ | |
| 4 | 3 | eqcomi 2744 | . 2 ⊢ ∅ = (∅ × (𝐶 ∩ 𝐷)) |
| 5 | 1, 2, 4 | 3eqtr4g 2795 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3925 ∅c0 4308 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: djudisj 6156 xp01disjl 8504 djuin 9932 nosupbnd2lem1 27679 noetasuplem3 27699 noetasuplem4 27700 xpdisjres 32579 esum2dlem 34123 disjxp1 45093 |
| Copyright terms: Public domain | W3C validator |