Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpdisj1 | Structured version Visualization version GIF version |
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
Ref | Expression |
---|---|
xpdisj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5614 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) = (∅ × (𝐶 ∩ 𝐷))) | |
2 | inxp 5754 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) | |
3 | 0xp 5696 | . . 3 ⊢ (∅ × (𝐶 ∩ 𝐷)) = ∅ | |
4 | 3 | eqcomi 2745 | . 2 ⊢ ∅ = (∅ × (𝐶 ∩ 𝐷)) |
5 | 1, 2, 4 | 3eqtr4g 2801 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3891 ∅c0 4262 × cxp 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 df-rel 5607 |
This theorem is referenced by: djudisj 6085 xp01disjl 8353 djuin 9724 xpdisjres 30986 esum2dlem 32109 nosupbnd2lem1 33967 noetasuplem3 33987 noetasuplem4 33988 disjxp1 42830 |
Copyright terms: Public domain | W3C validator |