Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpdisj1 | Structured version Visualization version GIF version |
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
Ref | Expression |
---|---|
xpdisj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5602 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) = (∅ × (𝐶 ∩ 𝐷))) | |
2 | inxp 5738 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) | |
3 | 0xp 5683 | . . 3 ⊢ (∅ × (𝐶 ∩ 𝐷)) = ∅ | |
4 | 3 | eqcomi 2748 | . 2 ⊢ ∅ = (∅ × (𝐶 ∩ 𝐷)) |
5 | 1, 2, 4 | 3eqtr4g 2804 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∩ cin 3890 ∅c0 4261 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-xp 5594 df-rel 5595 |
This theorem is referenced by: djudisj 6067 xp01disjl 8302 djuin 9660 xpdisjres 30916 esum2dlem 32039 nosupbnd2lem1 33897 noetasuplem3 33917 noetasuplem4 33918 disjxp1 42570 |
Copyright terms: Public domain | W3C validator |