MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdisj1 Structured version   Visualization version   GIF version

Theorem xpdisj1 6061
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj1 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)

Proof of Theorem xpdisj1
StepHypRef Expression
1 xpeq1 5602 . 2 ((𝐴𝐵) = ∅ → ((𝐴𝐵) × (𝐶𝐷)) = (∅ × (𝐶𝐷)))
2 inxp 5738 . 2 ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴𝐵) × (𝐶𝐷))
3 0xp 5683 . . 3 (∅ × (𝐶𝐷)) = ∅
43eqcomi 2748 . 2 ∅ = (∅ × (𝐶𝐷))
51, 2, 43eqtr4g 2804 1 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3890  c0 4261   × cxp 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-opab 5141  df-xp 5594  df-rel 5595
This theorem is referenced by:  djudisj  6067  xp01disjl  8302  djuin  9660  xpdisjres  30916  esum2dlem  32039  nosupbnd2lem1  33897  noetasuplem3  33917  noetasuplem4  33918  disjxp1  42570
  Copyright terms: Public domain W3C validator