MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdisj1 Structured version   Visualization version   GIF version

Theorem xpdisj1 6103
Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj1 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)

Proof of Theorem xpdisj1
StepHypRef Expression
1 xpeq1 5625 . 2 ((𝐴𝐵) = ∅ → ((𝐴𝐵) × (𝐶𝐷)) = (∅ × (𝐶𝐷)))
2 inxp 5766 . 2 ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴𝐵) × (𝐶𝐷))
3 0xp 5710 . . 3 (∅ × (𝐶𝐷)) = ∅
43eqcomi 2740 . 2 ∅ = (∅ × (𝐶𝐷))
51, 2, 43eqtr4g 2791 1 ((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3896  c0 4278   × cxp 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5149  df-xp 5617  df-rel 5618
This theorem is referenced by:  djudisj  6109  xp01disjl  8402  djuin  9806  nosupbnd2lem1  27649  noetasuplem3  27669  noetasuplem4  27670  xpdisjres  32570  esum2dlem  34097  disjxp1  45106
  Copyright terms: Public domain W3C validator