| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdisj1 | Structured version Visualization version GIF version | ||
| Description: Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpdisj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5655 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) = (∅ × (𝐶 ∩ 𝐷))) | |
| 2 | inxp 5798 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷)) | |
| 3 | 0xp 5740 | . . 3 ⊢ (∅ × (𝐶 ∩ 𝐷)) = ∅ | |
| 4 | 3 | eqcomi 2739 | . 2 ⊢ ∅ = (∅ × (𝐶 ∩ 𝐷)) |
| 5 | 1, 2, 4 | 3eqtr4g 2790 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3916 ∅c0 4299 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: djudisj 6143 xp01disjl 8459 djuin 9878 nosupbnd2lem1 27634 noetasuplem3 27654 noetasuplem4 27655 xpdisjres 32534 esum2dlem 34089 disjxp1 45070 |
| Copyright terms: Public domain | W3C validator |