Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjuniel Structured version   Visualization version   GIF version

Theorem disjuniel 32578
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
disjuniel.1 (𝜑Disj 𝑥𝐴 𝑥)
disjuniel.2 (𝜑𝐵𝐴)
disjuniel.3 (𝜑𝐶 ∈ (𝐴𝐵))
Assertion
Ref Expression
disjuniel (𝜑 → ( 𝐵𝐶) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem disjuniel
StepHypRef Expression
1 uniiun 5034 . . 3 𝐵 = 𝑥𝐵 𝑥
21ineq1i 4191 . 2 ( 𝐵𝐶) = ( 𝑥𝐵 𝑥𝐶)
3 disjuniel.1 . . 3 (𝜑Disj 𝑥𝐴 𝑥)
4 id 22 . . 3 (𝑥 = 𝐶𝑥 = 𝐶)
5 disjuniel.2 . . 3 (𝜑𝐵𝐴)
6 disjuniel.3 . . 3 (𝜑𝐶 ∈ (𝐴𝐵))
73, 4, 5, 6disjiunel 32577 . 2 (𝜑 → ( 𝑥𝐵 𝑥𝐶) = ∅)
82, 7eqtrid 2782 1 (𝜑 → ( 𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cdif 3923  cin 3925  wss 3926  c0 4308   cuni 4883   ciun 4967  Disj wdisj 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-sn 4602  df-uni 4884  df-iun 4969  df-disj 5087
This theorem is referenced by:  carsgclctunlem1  34349
  Copyright terms: Public domain W3C validator