![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjuniel | Structured version Visualization version GIF version |
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
disjuniel.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) |
disjuniel.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
disjuniel.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
Ref | Expression |
---|---|
disjuniel | ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5063 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | ineq1i 4224 | . 2 ⊢ (∪ 𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) |
3 | disjuniel.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) | |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
5 | disjuniel.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | disjuniel.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
7 | 3, 4, 5, 6 | disjiunel 32616 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) = ∅) |
8 | 2, 7 | eqtrid 2787 | 1 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ∪ ciun 4996 Disj wdisj 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-uni 4913 df-iun 4998 df-disj 5116 |
This theorem is referenced by: carsgclctunlem1 34299 |
Copyright terms: Public domain | W3C validator |