Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjuniel | Structured version Visualization version GIF version |
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
disjuniel.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) |
disjuniel.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
disjuniel.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
Ref | Expression |
---|---|
disjuniel | ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4947 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | ineq1i 4113 | . 2 ⊢ (∪ 𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) |
3 | disjuniel.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) | |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
5 | disjuniel.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | disjuniel.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
7 | 3, 4, 5, 6 | disjiunel 30457 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) = ∅) |
8 | 2, 7 | syl5eq 2805 | 1 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∖ cdif 3855 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 ∪ cuni 4798 ∪ ciun 4883 Disj wdisj 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-sn 4523 df-uni 4799 df-iun 4885 df-disj 4998 |
This theorem is referenced by: carsgclctunlem1 31803 |
Copyright terms: Public domain | W3C validator |