Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjuniel | Structured version Visualization version GIF version |
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
disjuniel.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) |
disjuniel.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
disjuniel.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
Ref | Expression |
---|---|
disjuniel | ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4988 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | ineq1i 4142 | . 2 ⊢ (∪ 𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) |
3 | disjuniel.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) | |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
5 | disjuniel.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | disjuniel.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
7 | 3, 4, 5, 6 | disjiunel 30935 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) = ∅) |
8 | 2, 7 | eqtrid 2790 | 1 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∪ ciun 4924 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-uni 4840 df-iun 4926 df-disj 5040 |
This theorem is referenced by: carsgclctunlem1 32284 |
Copyright terms: Public domain | W3C validator |