Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjuniel Structured version   Visualization version   GIF version

Theorem disjuniel 31828
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
disjuniel.1 (𝜑Disj 𝑥𝐴 𝑥)
disjuniel.2 (𝜑𝐵𝐴)
disjuniel.3 (𝜑𝐶 ∈ (𝐴𝐵))
Assertion
Ref Expression
disjuniel (𝜑 → ( 𝐵𝐶) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem disjuniel
StepHypRef Expression
1 uniiun 5062 . . 3 𝐵 = 𝑥𝐵 𝑥
21ineq1i 4209 . 2 ( 𝐵𝐶) = ( 𝑥𝐵 𝑥𝐶)
3 disjuniel.1 . . 3 (𝜑Disj 𝑥𝐴 𝑥)
4 id 22 . . 3 (𝑥 = 𝐶𝑥 = 𝐶)
5 disjuniel.2 . . 3 (𝜑𝐵𝐴)
6 disjuniel.3 . . 3 (𝜑𝐶 ∈ (𝐴𝐵))
73, 4, 5, 6disjiunel 31827 . 2 (𝜑 → ( 𝑥𝐵 𝑥𝐶) = ∅)
82, 7eqtrid 2785 1 (𝜑 → ( 𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cdif 3946  cin 3948  wss 3949  c0 4323   cuni 4909   ciun 4998  Disj wdisj 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-sn 4630  df-uni 4910  df-iun 5000  df-disj 5115
This theorem is referenced by:  carsgclctunlem1  33316
  Copyright terms: Public domain W3C validator