Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjuniel | Structured version Visualization version GIF version |
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.) |
Ref | Expression |
---|---|
disjuniel.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) |
disjuniel.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
disjuniel.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
Ref | Expression |
---|---|
disjuniel | ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4984 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
2 | 1 | ineq1i 4139 | . 2 ⊢ (∪ 𝐵 ∩ 𝐶) = (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) |
3 | disjuniel.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) | |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
5 | disjuniel.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | disjuniel.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
7 | 3, 4, 5, 6 | disjiunel 30836 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐶) = ∅) |
8 | 2, 7 | syl5eq 2791 | 1 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ∪ ciun 4921 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-uni 4837 df-iun 4923 df-disj 5036 |
This theorem is referenced by: carsgclctunlem1 32184 |
Copyright terms: Public domain | W3C validator |