MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlcpbl Structured version   Visualization version   GIF version

Theorem 2idlcpbl 20007
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlcpbl.x 𝑋 = (Base‘𝑅)
2idlcpbl.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpbl.i 𝐼 = (2Ideal‘𝑅)
2idlcpbl.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpbl ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpbl
StepHypRef Expression
1 simpll 765 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Ring)
2 eqid 2821 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2821 . . . . . . . . . . . . 13 (oppr𝑅) = (oppr𝑅)
4 eqid 2821 . . . . . . . . . . . . 13 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 2idlcpbl.i . . . . . . . . . . . . 13 𝐼 = (2Ideal‘𝑅)
62, 3, 4, 52idlval 20006 . . . . . . . . . . . 12 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
76elin2 4174 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
87simplbi 500 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
98ad2antlr 725 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
102lidlsubg 19988 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
111, 9, 10syl2anc 586 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
12 2idlcpbl.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
13 2idlcpbl.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
1412, 13eqger 18330 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
1511, 14syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
16 simprl 769 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
1715, 16ersym 8301 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
18 ringabl 19330 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
1918ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Abel)
2012, 2lidlss 19983 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
219, 20syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
22 eqid 2821 . . . . . . . 8 (-g𝑅) = (-g𝑅)
2312, 22, 13eqgabl 18955 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2419, 21, 23syl2anc 586 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2517, 24mpbid 234 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2625simp2d 1139 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
27 simprr 771 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
2812, 22, 13eqgabl 18955 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2919, 21, 28syl2anc 586 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
3027, 29mpbid 234 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3130simp1d 1138 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
32 2idlcpbl.t . . . . 5 · = (.r𝑅)
3312, 32ringcl 19311 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
341, 26, 31, 33syl3anc 1367 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3525simp1d 1138 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3630simp2d 1139 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
3712, 32ringcl 19311 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
381, 35, 36, 37syl3anc 1367 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
39 ringgrp 19302 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4039ad2antrr 724 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
4112, 32ringcl 19311 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 35, 31, 41syl3anc 1367 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
4312, 22grpnnncan2 18196 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 38, 34, 42, 43syl13anc 1368 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4512, 32, 22, 1, 35, 36, 31ringsubdi 19349 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
4630simp3d 1140 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
472, 12, 32lidlmcl 19990 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
481, 9, 35, 46, 47syl22anc 836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
4945, 48eqeltrrd 2914 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
50 eqid 2821 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5112, 32, 3, 50opprmul 19376 . . . . . . 7 (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵)
5212, 32, 22, 1, 26, 35, 31rngsubdir 19350 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
5351, 52syl5eq 2868 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
543opprring 19381 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
5554ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Ring)
567simprbi 499 . . . . . . . 8 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
5756ad2antlr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
5825simp3d 1140 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
593, 12opprbas 19379 . . . . . . . 8 𝑋 = (Base‘(oppr𝑅))
604, 59, 50lidlmcl 19990 . . . . . . 7 ((((oppr𝑅) ∈ Ring ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))) ∧ (𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6155, 57, 31, 58, 60syl22anc 836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6253, 61eqeltrrd 2914 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
632, 22lidlsubcl 19989 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
641, 9, 49, 62, 63syl22anc 836 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
6544, 64eqeltrrd 2914 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
6612, 22, 13eqgabl 18955 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6719, 21, 66syl2anc 586 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6834, 38, 65, 67mpbir3and 1338 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
6968ex 415 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156   Er wer 8286  Basecbs 16483  .rcmulr 16566  Grpcgrp 18103  -gcsg 18105  SubGrpcsubg 18273   ~QG cqg 18275  Abelcabl 18907  Ringcrg 19297  opprcoppr 19372  LIdealclidl 19942  2Idealc2idl 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-eqg 18278  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-2idl 20005
This theorem is referenced by:  qus1  20008  qusrhm  20010  quscrng  20013  qsidomlem1  30965  qsidomlem2  30966
  Copyright terms: Public domain W3C validator