Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsidomlem1 Structured version   Visualization version   GIF version

Theorem qsidomlem1 30965
Description: If the quotient ring of a commutative ring relative to an ideal is an integral domain, that ideal must be prime. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qsidom.1 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
Assertion
Ref Expression
qsidomlem1 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅))

Proof of Theorem qsidomlem1
Dummy variables 𝑦 𝑒 𝑓 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19308 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad2antrr 724 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝑅 ∈ Ring)
3 simplr 767 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (LIdeal‘𝑅))
4 qsidom.1 . . . . . . . . 9 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
5 simpr 487 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝐼 = (Base‘𝑅))
65oveq2d 7172 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (𝑅 ~QG 𝐼) = (𝑅 ~QG (Base‘𝑅)))
76oveq2d 7172 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
84, 7syl5eq 2868 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
98fveq2d 6674 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))))
10 ringgrp 19302 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
111, 10syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
1211ad3antrrr 728 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑅 ∈ Grp)
13 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2821 . . . . . . . . 9 (𝑅 /s (𝑅 ~QG (Base‘𝑅))) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))
1513, 14qustriv 30929 . . . . . . . 8 (𝑅 ∈ Grp → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
1612, 15syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
179, 16eqtrd 2856 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)})
1817fveq2d 6674 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = (♯‘{(Base‘𝑅)}))
19 fvex 6683 . . . . . 6 (Base‘𝑅) ∈ V
20 hashsng 13731 . . . . . 6 ((Base‘𝑅) ∈ V → (♯‘{(Base‘𝑅)}) = 1)
2119, 20ax-mp 5 . . . . 5 (♯‘{(Base‘𝑅)}) = 1
2218, 21syl6eq 2872 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1)
23 1red 10642 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 1 ∈ ℝ)
24 isidom 20077 . . . . . . . . . 10 (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn))
2524simprbi 499 . . . . . . . . 9 (𝑄 ∈ IDomn → 𝑄 ∈ Domn)
26 domnnzr 20068 . . . . . . . . 9 (𝑄 ∈ Domn → 𝑄 ∈ NzRing)
2725, 26syl 17 . . . . . . . 8 (𝑄 ∈ IDomn → 𝑄 ∈ NzRing)
2827ad2antlr 725 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑄 ∈ NzRing)
29 eqid 2821 . . . . . . . . 9 (Base‘𝑄) = (Base‘𝑄)
3029isnzr2hash 20037 . . . . . . . 8 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ 1 < (♯‘(Base‘𝑄))))
3130simprbi 499 . . . . . . 7 (𝑄 ∈ NzRing → 1 < (♯‘(Base‘𝑄)))
3228, 31syl 17 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑄)))
3323, 32gtned 10775 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) ≠ 1)
3433neneqd 3021 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → ¬ (♯‘(Base‘𝑄)) = 1)
3522, 34pm2.65da 815 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → ¬ 𝐼 = (Base‘𝑅))
3635neqned 3023 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ≠ (Base‘𝑅))
3725ad4antlr 731 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝑄 ∈ Domn)
38 ovex 7189 . . . . . . . . . 10 (𝑅 ~QG 𝐼) ∈ V
3938ecelqsi 8353 . . . . . . . . 9 (𝑥 ∈ (Base‘𝑅) → [𝑥](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
4039ad3antlr 729 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑥](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
41 simp-5l 783 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝑅 ∈ CRing)
424a1i 11 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
43 eqidd 2822 . . . . . . . . . 10 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
44 ovexd 7191 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V)
45 id 22 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
4642, 43, 44, 45qusbas 16818 . . . . . . . . 9 (𝑅 ∈ CRing → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
4741, 46syl 17 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
4840, 47eleqtrd 2915 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄))
4938ecelqsi 8353 . . . . . . . . 9 (𝑦 ∈ (Base‘𝑅) → [𝑦](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
5049ad2antlr 725 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑦](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
5150, 47eleqtrd 2915 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄))
5241, 1, 103syl 18 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝑅 ∈ Grp)
53 eqid 2821 . . . . . . . . . . . 12 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5453lidlsubg 19988 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
551, 54sylan 582 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
5655ad4antr 730 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝐼 ∈ (SubGrp‘𝑅))
57 simpr 487 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
58 eqid 2821 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
5958eqg0el 30926 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r𝑅)𝑦) ∈ 𝐼))
6059biimpar 480 . . . . . . . . 9 (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
6152, 56, 57, 60syl21anc 835 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
624a1i 11 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
63 eqidd 2822 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
6413, 58eqger 18330 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
6555, 64syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
66 simpl 485 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
6753crng2idl 20012 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (2Ideal‘𝑅))
6867eleq2d 2898 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅)))
6968biimpa 479 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
70 eqid 2821 . . . . . . . . . . . 12 (2Ideal‘𝑅) = (2Ideal‘𝑅)
71 eqid 2821 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
7213, 58, 70, 712idlcpbl 20007 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
731, 69, 72syl2an2r 683 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
741ad2antrr 724 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
75 simprl 769 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅))
76 simprr 771 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅))
7713, 71ringcl 19311 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
7874, 75, 76, 77syl3anc 1367 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
79 eqid 2821 . . . . . . . . . 10 (.r𝑄) = (.r𝑄)
8062, 63, 65, 66, 73, 78, 71, 79qusmulval 16828 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
8180ad5ant134 1363 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
82 lidlnsg 30961 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
831, 82sylan 582 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
84 eqid 2821 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
854, 84qus0 18338 . . . . . . . . . . 11 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
8683, 85syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
8713, 58, 84eqgid 18332 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
8855, 87syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
8986, 88eqtr3d 2858 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (0g𝑄) = 𝐼)
9089ad4antr 730 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (0g𝑄) = 𝐼)
9161, 81, 903eqtr4d 2866 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g𝑄))
92 eqid 2821 . . . . . . . . 9 (0g𝑄) = (0g𝑄)
9329, 79, 92domneq0 20070 . . . . . . . 8 ((𝑄 ∈ Domn ∧ [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄) ∧ [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) → (([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g𝑄) ↔ ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄))))
9493biimpa 479 . . . . . . 7 (((𝑄 ∈ Domn ∧ [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄) ∧ [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) ∧ ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g𝑄)) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)))
9537, 48, 51, 91, 94syl31anc 1369 . . . . . 6 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)))
9689eqeq2d 2832 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼))
9766, 1, 103syl 18 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Grp)
9858eqg0el 30926 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
9997, 55, 98syl2anc 586 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
10096, 99bitrd 281 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ↔ 𝑥𝐼))
10189eqeq2d 2832 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = (0g𝑄) ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼))
10258eqg0el 30926 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
10397, 55, 102syl2anc 586 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
104101, 103bitrd 281 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = (0g𝑄) ↔ 𝑦𝐼))
105100, 104orbi12d 915 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)) ↔ (𝑥𝐼𝑦𝐼)))
106105ad4antr 730 . . . . . 6 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)) ↔ (𝑥𝐼𝑦𝐼)))
10795, 106mpbid 234 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥𝐼𝑦𝐼))
108107ex 415 . . . 4 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
109108anasss 469 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
110109ralrimivva 3191 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
11113, 71prmidl2 30958 . 2 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))) → 𝐼 ∈ (PrmIdeal‘𝑅))
1122, 3, 36, 110, 111syl22anc 836 1 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156   Er wer 8286  [cec 8287   / cqs 8288  1c1 10538   < clt 10675  chash 13691  Basecbs 16483  .rcmulr 16566  0gc0g 16713   /s cqus 16778  Grpcgrp 18103  SubGrpcsubg 18273  NrmSGrpcnsg 18274   ~QG cqg 18275  Ringcrg 19297  CRingccrg 19298  LIdealclidl 19942  2Idealc2idl 20004  NzRingcnzr 20030  Domncdomn 20053  IDomncidom 20054  PrmIdealcprmidl 30952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-nsg 18277  df-eqg 18278  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-nzr 20031  df-domn 20057  df-idom 20058  df-prmidl 30953
This theorem is referenced by:  qsidom  30967
  Copyright terms: Public domain W3C validator