Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemradcnv Structured version   Visualization version   GIF version

Theorem binomcxplemradcnv 40704
Description: Lemma for binomcxp 40709. By binomcxplemfrat 40703 and radcnvrat 40666 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹𝑘) · (𝑏𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
binomcxplemradcnv ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Distinct variable groups:   𝐶,𝑘   𝑘,𝑏,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemradcnv
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 simpl 485 . . . . . . . . 9 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → 𝑏 = 𝑥)
32oveq1d 7171 . . . . . . . 8 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → (𝑏𝑘) = (𝑥𝑘))
43oveq2d 7172 . . . . . . 7 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑏𝑘)) = ((𝐹𝑘) · (𝑥𝑘)))
54mpteq2dva 5161 . . . . . 6 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))))
6 fveq2 6670 . . . . . . . 8 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
7 oveq2 7164 . . . . . . . 8 (𝑘 = 𝑦 → (𝑥𝑘) = (𝑥𝑦))
86, 7oveq12d 7174 . . . . . . 7 (𝑘 = 𝑦 → ((𝐹𝑘) · (𝑥𝑘)) = ((𝐹𝑦) · (𝑥𝑦)))
98cbvmptv 5169 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦)))
105, 9syl6eq 2872 . . . . 5 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
1110cbvmptv 5169 . . . 4 (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
121, 11eqtri 2844 . . 3 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
13 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
1413ad2antrr 724 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
15 simpr 487 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
1614, 15bcccl 40691 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
17 binomcxplem.f . . . 4 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
1816, 17fmptd 6878 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ)
19 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
20 fvoveq1 7179 . . . . . 6 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
21 fveq2 6670 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2220, 21oveq12d 7174 . . . . 5 (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹𝑖)))
2322fveq2d 6674 . . . 4 (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
2423cbvmptv 5169 . . 3 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
25 nn0uz 12281 . . 3 0 = (ℤ‘0)
26 0nn0 11913 . . . 4 0 ∈ ℕ0
2726a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0)
2817a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
29 simpr 487 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖)
3029oveq2d 7172 . . . . 5 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖))
31 simpr 487 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
32 ovexd 7191 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V)
3328, 30, 31, 32fvmptd 6775 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) = (𝐶C𝑐𝑖))
34 elfznn0 13001 . . . . . . 7 (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0)
3534con3i 157 . . . . . 6 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3635ad2antlr 725 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3713adantr 483 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
38 simpr 487 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3937, 38bcc0 40692 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1))))
4039necon3abid 3052 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4140adantlr 713 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4236, 41mpbird 259 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0)
4333, 42eqnetrd 3083 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) ≠ 0)
44 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
45 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
46 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
4744, 45, 46, 13, 17binomcxplemfrat 40703 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
48 ax-1ne0 10606 . . . 4 1 ≠ 0
4948a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0)
5012, 18, 19, 24, 25, 27, 43, 47, 49radcnvrat 40666 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1))
51 1div1e1 11330 . 2 (1 / 1) = 1
5250, 51syl6eq 2872 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cmin 10870   / cdiv 11297  0cn0 11898  +crp 12390  ...cfz 12893  seqcseq 13370  cexp 13430  abscabs 14593  cli 14841  C𝑐cbcc 40688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-prod 15260  df-fallfac 15361  df-bcc 40689
This theorem is referenced by:  binomcxplemdvbinom  40705  binomcxplemnotnn0  40708
  Copyright terms: Public domain W3C validator