MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv2 27119
Description: Lemma 4b for clwlkclwwlklem2a 27121. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv2
StepHypRef Expression
1 clwlkclwwlklem2.f . . 3 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
21a1i 11 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)}))))
3 simpr 479 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 = ((♯‘𝑃) − 2))
4 nn0z 11592 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
5 2z 11601 . . . . . . . . . . . . . 14 2 ∈ ℤ
64, 5jctir 562 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
7 zsubcl 11611 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘𝑃) − 2) ∈ ℤ)
86, 7syl 17 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
98adantr 472 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
109adantr 472 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℤ)
113, 10eqeltrd 2839 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 ∈ ℤ)
1211ex 449 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → 𝑥 ∈ ℤ))
13 zre 11573 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
14 nn0re 11493 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
15 2re 11282 . . . . . . . . . . . . . 14 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1714, 16resubcld 10650 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
1817adantr 472 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℝ)
19 lttri3 10313 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
2013, 18, 19syl2anr 496 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
21 simpl 474 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2220, 21syl6bi 243 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2322ex 449 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ ℤ → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2412, 23syld 47 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2524com13 88 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2625pm2.43i 52 . . . . 5 (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2726impcom 445 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2827iffalsed 4241 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝑥), (𝑃‘0)}))
29 fveq2 6352 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
3029adantl 473 . . . . 5 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
3130preq1d 4418 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
3231fveq2d 6356 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
3328, 32eqtrd 2794 . 2 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
346adantr 472 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
3534, 7syl 17 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
3614, 16subge0d 10809 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
3736biimpar 503 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ≤ ((♯‘𝑃) − 2))
38 elnn0z 11582 . . . 4 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
3935, 37, 38sylanbrc 701 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
40 nn0ge2m1nn 11552 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
41 1red 10247 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 ∈ ℝ)
4215a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
4314adantr 472 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
44 1lt2 11386 . . . . 5 1 < 2
4544a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 < 2)
4641, 42, 43, 45ltsub2dd 10832 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1))
47 elfzo0 12703 . . 3 (((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)) ↔ (((♯‘𝑃) − 2) ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1)))
4839, 40, 46, 47syl3anbrc 1429 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)))
49 fvexd 6364 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}) ∈ V)
502, 33, 48, 49fvmptd 6450 1 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  ifcif 4230  {cpr 4323   class class class wbr 4804  cmpt 4881  ccnv 5265  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cmin 10458  cn 11212  2c2 11262  0cn0 11484  cz 11569  ..^cfzo 12659  chash 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660
This theorem is referenced by:  clwlkclwwlklem2a4  27120
  Copyright terms: Public domain W3C validator