MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalg Structured version   Visualization version   GIF version

Theorem colinearalg 25685
Description: An algebraic characterization of colinearity. Note the similarity to brbtwn2 25680. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalg ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem colinearalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 brbtwn2 25680 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
2 brbtwn2 25680 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))))))
323comr 1270 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))))))
4 colinearalglem3 25683 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
543comr 1270 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
65anbi2d 739 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
73, 6bitrd 268 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
8 brbtwn2 25680 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))))
9 colinearalglem2 25682 . . . . . 6 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
109anbi2d 739 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
118, 10bitrd 268 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
12113coml 1269 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
131, 7, 123orbi123d 1395 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))))
14 fveecn 25677 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
15 fveecn 25677 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
16 subid 10245 . . . . . . . . . . . . . . . 16 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
1716oveq2d 6621 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℂ → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐶𝑖)) · 0))
1817adantl 482 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐶𝑖)) · 0))
19 subcl 10225 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
2019mul01d 10180 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · 0) = 0)
2118, 20eqtrd 2660 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
2214, 15, 21syl2an 494 . . . . . . . . . . . 12 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
2322anandirs 873 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
24 0le0 11055 . . . . . . . . . . 11 0 ≤ 0
2523, 24syl6eqbr 4657 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
2625ralrimiva 2965 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
27263adant1 1077 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
28 fveq1 6149 . . . . . . . . . . . 12 (𝐶 = 𝐴 → (𝐶𝑖) = (𝐴𝑖))
2928oveq2d 6621 . . . . . . . . . . 11 (𝐶 = 𝐴 → ((𝐵𝑖) − (𝐶𝑖)) = ((𝐵𝑖) − (𝐴𝑖)))
3028oveq2d 6621 . . . . . . . . . . 11 (𝐶 = 𝐴 → ((𝐶𝑖) − (𝐶𝑖)) = ((𝐶𝑖) − (𝐴𝑖)))
3129, 30oveq12d 6623 . . . . . . . . . 10 (𝐶 = 𝐴 → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
3231breq1d 4628 . . . . . . . . 9 (𝐶 = 𝐴 → ((((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
3332ralbidv 2985 . . . . . . . 8 (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
3427, 33syl5ibcom 235 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
35 3mix1 1228 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))
3634, 35syl6 35 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
3736a1dd 50 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
38 simp3 1061 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
39 simp1 1059 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
40 eqeefv 25678 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 ↔ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
4138, 39, 40syl2anc 692 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 ↔ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
4241necon3abid 2832 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
43 df-ne 2797 . . . . . . . . 9 ((𝐶𝑝) ≠ (𝐴𝑝) ↔ ¬ (𝐶𝑝) = (𝐴𝑝))
4443rexbii 3039 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐶𝑝) = (𝐴𝑝))
45 rexnal 2994 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐶𝑝) = (𝐴𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝))
4644, 45bitr2i 265 . . . . . . 7 (¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝) ↔ ∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝))
4742, 46syl6bb 276 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 ↔ ∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝)))
48 ralcom 3095 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))
49 fveq2 6150 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐶𝑗) = (𝐶𝑝))
50 fveq2 6150 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐴𝑗) = (𝐴𝑝))
5149, 50oveq12d 6623 . . . . . . . . . . . . . 14 (𝑗 = 𝑝 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑝) − (𝐴𝑝)))
5251oveq2d 6621 . . . . . . . . . . . . 13 (𝑗 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))))
53 fveq2 6150 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐵𝑗) = (𝐵𝑝))
5453, 50oveq12d 6623 . . . . . . . . . . . . . 14 (𝑗 = 𝑝 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑝) − (𝐴𝑝)))
5554oveq1d 6620 . . . . . . . . . . . . 13 (𝑗 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))))
5652, 55eqeq12d 2641 . . . . . . . . . . . 12 (𝑗 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5756ralbidv 2985 . . . . . . . . . . 11 (𝑗 = 𝑝 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5857rspcv 3296 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5958ad2antrl 763 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
60 fveere 25676 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
61603ad2antl1 1221 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
62 fveere 25676 . . . . . . . . . . . . . 14 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
63623ad2antl2 1222 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
64 fveere 25676 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
65643ad2antl3 1223 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
6661, 63, 653jca 1240 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → ((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ))
6766anim1i 591 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)))
6867anasss 678 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)))
69 fveecn 25677 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
70693ad2antl1 1221 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
71143ad2antl2 1222 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
72153ad2antl3 1223 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
7370, 71, 723jca 1240 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
7473adantlr 750 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
75 recn 9971 . . . . . . . . . . . . . . . 16 ((𝐴𝑝) ∈ ℝ → (𝐴𝑝) ∈ ℂ)
76 recn 9971 . . . . . . . . . . . . . . . 16 ((𝐵𝑝) ∈ ℝ → (𝐵𝑝) ∈ ℂ)
77 recn 9971 . . . . . . . . . . . . . . . 16 ((𝐶𝑝) ∈ ℝ → (𝐶𝑝) ∈ ℂ)
7875, 76, 773anim123i 1245 . . . . . . . . . . . . . . 15 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
7978adantr 481 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
8079ad2antlr 762 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
81 simplrr 800 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐴𝑝))
82 eqcom 2633 . . . . . . . . . . . . . 14 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖))
83 simp12 1090 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑖) ∈ ℂ)
84 simp11 1089 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑖) ∈ ℂ)
85 simp22 1093 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑝) ∈ ℂ)
86 simp21 1092 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑝) ∈ ℂ)
8785, 86subcld 10337 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
88 simp23 1094 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑝) ∈ ℂ)
8988, 86subcld 10337 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
90 simpr3 1067 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (𝐶𝑝) ∈ ℂ)
91 simpr1 1065 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (𝐴𝑝) ∈ ℂ)
9290, 91subeq0ad 10347 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (((𝐶𝑝) − (𝐴𝑝)) = 0 ↔ (𝐶𝑝) = (𝐴𝑝)))
9392necon3bid 2840 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (((𝐶𝑝) − (𝐴𝑝)) ≠ 0 ↔ (𝐶𝑝) ≠ (𝐴𝑝)))
9493biimp3ar 1430 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ≠ 0)
9587, 89, 94divcld 10746 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℂ)
96 simp13 1091 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑖) ∈ ℂ)
9796, 84subcld 10337 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
9895, 97mulcld 10005 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
99 subadd2 10230 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ ∧ ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖)))
10099bicomd 213 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ ∧ ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
10183, 84, 98, 100syl3anc 1323 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
10287, 97, 89, 94div23d 10783 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))))
103102eqeq2d 2636 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
104 eqcom 2633 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)))
10587, 97mulcld 10005 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
10683, 84subcld 10337 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑖) − (𝐴𝑖)) ∈ ℂ)
107105, 89, 106, 94divmuld 10768 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)) ↔ (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
10889, 106mulcomd 10006 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))))
109108eqeq1d 2628 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
110107, 109bitrd 268 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
111104, 110syl5bb 272 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
112101, 103, 1113bitr2d 296 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
11382, 112syl5bb 272 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
11474, 80, 81, 113syl3anc 1323 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
115114ralbidva 2984 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
116 3simpb 1057 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
117 simpl2 1063 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑝) ∈ ℝ)
118 simpl1 1062 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑝) ∈ ℝ)
119117, 118resubcld 10403 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
120 simpl3 1064 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑝) ∈ ℝ)
121120, 118resubcld 10403 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℝ)
122 simp3 1061 . . . . . . . . . . . . . . . . 17 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐶𝑝) ∈ ℝ)
123122recnd 10013 . . . . . . . . . . . . . . . 16 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐶𝑝) ∈ ℂ)
124753ad2ant1 1080 . . . . . . . . . . . . . . . 16 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐴𝑝) ∈ ℂ)
125123, 124subeq0ad 10347 . . . . . . . . . . . . . . 15 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐶𝑝) − (𝐴𝑝)) = 0 ↔ (𝐶𝑝) = (𝐴𝑝)))
126125necon3bid 2840 . . . . . . . . . . . . . 14 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐶𝑝) − (𝐴𝑝)) ≠ 0 ↔ (𝐶𝑝) ≠ (𝐴𝑝)))
127126biimpar 502 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ≠ 0)
128119, 121, 127redivcld 10798 . . . . . . . . . . . 12 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ)
129 colinearalglem4 25684 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
130 oveq1 6612 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐵𝑖) − (𝐴𝑖)) = ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)))
131130oveq1d 6620 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
132131breq1d 4628 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
133132ralimi 2952 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
134 ralbi 3066 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
135133, 134syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
136 oveq2 6613 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐶𝑖) − (𝐵𝑖)) = ((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
137 oveq2 6613 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐴𝑖) − (𝐵𝑖)) = ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
138136, 137oveq12d 6623 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) = (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))))
139138breq1d 4628 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
140139ralimi 2952 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
141 ralbi 3066 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
142140, 141syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
143 oveq1 6612 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐵𝑖) − (𝐶𝑖)) = ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
144143oveq2d 6621 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))))
145144breq1d 4628 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
146145ralimi 2952 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
147 ralbi 3066 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
148146, 147syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
149135, 142, 1483orbi123d 1395 . . . . . . . . . . . . 13 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ↔ (∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)))
150129, 149syl5ibrcom 237 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
151116, 128, 150syl2an 494 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
152115, 151sylbird 250 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15368, 152syldan 487 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15459, 153syld 47 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15548, 154syl5bi 232 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
156155rexlimdvaa 3030 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
15747, 156sylbid 230 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
15837, 157pm2.61dne 2882 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
159158pm4.71rd 666 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
160 andir 911 . . . . 5 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
161160orbi1i 542 . . . 4 ((((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
162 df-3or 1037 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))
163162anbi1i 730 . . . . 5 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
164 andir 911 . . . . 5 ((((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
165163, 164bitri 264 . . . 4 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
166 df-3or 1037 . . . 4 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
167161, 165, 1663bitr4i 292 . . 3 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
168159, 167syl6rbb 277 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
16913, 168bitrd 268 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  cop 4159   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cle 10020  cmin 10211   / cdiv 10629  ...cfz 12265  𝔼cee 25663   Btwn cbtwn 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-icc 12121  df-fz 12266  df-seq 12739  df-exp 12798  df-ee 25666  df-btwn 25667
This theorem is referenced by:  axlowdimlem6  25722
  Copyright terms: Public domain W3C validator