MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem6 Structured version   Visualization version   GIF version

Theorem axlowdimlem6 26733
Description: Lemma for axlowdim 26747. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypotheses
Ref Expression
axlowdimlem6.1 𝐴 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem6.2 𝐵 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem6.3 𝐶 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
Assertion
Ref Expression
axlowdimlem6 (𝑁 ∈ (ℤ‘2) → ¬ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))

Proof of Theorem axlowdimlem6
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12014 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
2 eluzelz 12254 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 2nn 11711 . . . . . . . . . . 11 2 ∈ ℕ
4 uznnssnn 12296 . . . . . . . . . . 11 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ⊆ ℕ
6 nnuz 12282 . . . . . . . . . 10 ℕ = (ℤ‘1)
75, 6sseqtri 4003 . . . . . . . . 9 (ℤ‘2) ⊆ (ℤ‘1)
87sseli 3963 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (ℤ‘1))
9 eluzle 12257 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ≤ 𝑁)
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 ≤ 𝑁)
11 1re 10641 . . . . . . . 8 1 ∈ ℝ
1211leidi 11174 . . . . . . 7 1 ≤ 1
1310, 12jctil 522 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (1 ≤ 1 ∧ 1 ≤ 𝑁))
14 elfz4 12902 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 𝑁)) → 1 ∈ (1...𝑁))
151, 2, 1, 13, 14syl31anc 1369 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ∈ (1...𝑁))
16 eluzel2 12249 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℤ)
17 eluzle 12257 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
18 1le2 11847 . . . . . . 7 1 ≤ 2
1917, 18jctil 522 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
20 elfz4 12902 . . . . . 6 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 ≤ 2 ∧ 2 ≤ 𝑁)) → 2 ∈ (1...𝑁))
211, 2, 16, 19, 20syl31anc 1369 . . . . 5 (𝑁 ∈ (ℤ‘2) → 2 ∈ (1...𝑁))
22 ax-1ne0 10606 . . . . . . 7 1 ≠ 0
23 1t1e1 11800 . . . . . . . 8 (1 · 1) = 1
24 0cn 10633 . . . . . . . . 9 0 ∈ ℂ
2524mul01i 10830 . . . . . . . 8 (0 · 0) = 0
2623, 25neeq12i 3082 . . . . . . 7 ((1 · 1) ≠ (0 · 0) ↔ 1 ≠ 0)
2722, 26mpbir 233 . . . . . 6 (1 · 1) ≠ (0 · 0)
28 fveq2 6670 . . . . . . . . . . . 12 (𝑖 = 1 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1))
29 0re 10643 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3011, 29axlowdimlem4 26731 . . . . . . . . . . . . . . 15 {⟨1, 1⟩, ⟨2, 0⟩}:(1...2)⟶ℝ
31 ffn 6514 . . . . . . . . . . . . . . 15 ({⟨1, 1⟩, ⟨2, 0⟩}:(1...2)⟶ℝ → {⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2))
3230, 31ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2)
33 axlowdimlem1 26728 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
34 ffn 6514 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
3533, 34ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
36 axlowdimlem2 26729 . . . . . . . . . . . . . . 15 ((1...2) ∩ (3...𝑁)) = ∅
37 1z 12013 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
38 2z 12015 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
3937, 38, 373pm3.2i 1335 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ∈ ℤ)
4012, 18pm3.2i 473 . . . . . . . . . . . . . . . 16 (1 ≤ 1 ∧ 1 ≤ 2)
41 elfz4 12902 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ≤ 1 ∧ 1 ≤ 2)) → 1 ∈ (1...2))
4239, 40, 41mp2an 690 . . . . . . . . . . . . . . 15 1 ∈ (1...2)
4336, 42pm3.2i 473 . . . . . . . . . . . . . 14 (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))
44 fvun1 6754 . . . . . . . . . . . . . 14 (({⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 1⟩, ⟨2, 0⟩}‘1))
4532, 35, 43, 44mp3an 1457 . . . . . . . . . . . . 13 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 1⟩, ⟨2, 0⟩}‘1)
46 1ne2 11846 . . . . . . . . . . . . . 14 1 ≠ 2
47 1ex 10637 . . . . . . . . . . . . . . 15 1 ∈ V
4847, 47fvpr1 6952 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 0⟩}‘1) = 1)
4946, 48ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 1⟩, ⟨2, 0⟩}‘1) = 1
5045, 49eqtri 2844 . . . . . . . . . . . 12 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = 1
5128, 50syl6eq 2872 . . . . . . . . . . 11 (𝑖 = 1 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = 1)
52 fveq2 6670 . . . . . . . . . . . 12 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1))
5329, 29axlowdimlem4 26731 . . . . . . . . . . . . . . 15 {⟨1, 0⟩, ⟨2, 0⟩}:(1...2)⟶ℝ
54 ffn 6514 . . . . . . . . . . . . . . 15 ({⟨1, 0⟩, ⟨2, 0⟩}:(1...2)⟶ℝ → {⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2)
56 fvun1 6754 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1))
5755, 35, 43, 56mp3an 1457 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1)
5829elexi 3513 . . . . . . . . . . . . . . 15 0 ∈ V
5947, 58fvpr1 6952 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0)
6046, 59ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0
6157, 60eqtri 2844 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘1) = 0
6252, 61syl6eq 2872 . . . . . . . . . . 11 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = 0)
6351, 62oveq12d 7174 . . . . . . . . . 10 (𝑖 = 1 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = (1 − 0))
64 1m0e1 11759 . . . . . . . . . 10 (1 − 0) = 1
6563, 64syl6eq 2872 . . . . . . . . 9 (𝑖 = 1 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = 1)
6665oveq1d 7171 . . . . . . . 8 (𝑖 = 1 → (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))))
67 fveq2 6670 . . . . . . . . . . . 12 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1))
6829, 11axlowdimlem4 26731 . . . . . . . . . . . . . . 15 {⟨1, 0⟩, ⟨2, 1⟩}:(1...2)⟶ℝ
69 ffn 6514 . . . . . . . . . . . . . . 15 ({⟨1, 0⟩, ⟨2, 1⟩}:(1...2)⟶ℝ → {⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2))
7068, 69ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2)
71 fvun1 6754 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 1 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 1⟩}‘1))
7270, 35, 43, 71mp3an 1457 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1) = ({⟨1, 0⟩, ⟨2, 1⟩}‘1)
7347, 58fvpr1 6952 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 1⟩}‘1) = 0)
7446, 73ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 1⟩}‘1) = 0
7572, 74eqtri 2844 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘1) = 0
7667, 75syl6eq 2872 . . . . . . . . . . 11 (𝑖 = 1 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = 0)
7776, 62oveq12d 7174 . . . . . . . . . 10 (𝑖 = 1 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = (0 − 0))
78 0m0e0 11758 . . . . . . . . . 10 (0 − 0) = 0
7977, 78syl6eq 2872 . . . . . . . . 9 (𝑖 = 1 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) = 0)
8079oveq2d 7172 . . . . . . . 8 (𝑖 = 1 → (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0))
8166, 80neeq12d 3077 . . . . . . 7 (𝑖 = 1 → ((((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ (1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0)))
82 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2))
8337, 38, 383pm3.2i 1335 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ)
84 2re 11712 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
8584leidi 11174 . . . . . . . . . . . . . . . . 17 2 ≤ 2
8618, 85pm3.2i 473 . . . . . . . . . . . . . . . 16 (1 ≤ 2 ∧ 2 ≤ 2)
87 elfz4 12902 . . . . . . . . . . . . . . . 16 (((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 ≤ 2 ∧ 2 ≤ 2)) → 2 ∈ (1...2))
8883, 86, 87mp2an 690 . . . . . . . . . . . . . . 15 2 ∈ (1...2)
8936, 88pm3.2i 473 . . . . . . . . . . . . . 14 (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))
90 fvun1 6754 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 1⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 1⟩}‘2))
9170, 35, 89, 90mp3an 1457 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 1⟩}‘2)
9238elexi 3513 . . . . . . . . . . . . . . 15 2 ∈ V
9392, 47fvpr2 6953 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 1⟩}‘2) = 1)
9446, 93ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 1⟩}‘2) = 1
9591, 94eqtri 2844 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘2) = 1
9682, 95syl6eq 2872 . . . . . . . . . . 11 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = 1)
97 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2))
98 fvun1 6754 . . . . . . . . . . . . . 14 (({⟨1, 0⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2))
9955, 35, 89, 98mp3an 1457 . . . . . . . . . . . . 13 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2)
10092, 58fvpr2 6953 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
10146, 100ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0
10299, 101eqtri 2844 . . . . . . . . . . . 12 (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = 0
10397, 102syl6eq 2872 . . . . . . . . . . 11 (𝑗 = 2 → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = 0)
10496, 103oveq12d 7174 . . . . . . . . . 10 (𝑗 = 2 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = (1 − 0))
105104, 64syl6eq 2872 . . . . . . . . 9 (𝑗 = 2 → ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = 1)
106105oveq2d 7172 . . . . . . . 8 (𝑗 = 2 → (1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (1 · 1))
107 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 2 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2))
108 fvun1 6754 . . . . . . . . . . . . . 14 (({⟨1, 1⟩, ⟨2, 0⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 2 ∈ (1...2))) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 1⟩, ⟨2, 0⟩}‘2))
10932, 35, 89, 108mp3an 1457 . . . . . . . . . . . . 13 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = ({⟨1, 1⟩, ⟨2, 0⟩}‘2)
11092, 58fvpr2 6953 . . . . . . . . . . . . . 14 (1 ≠ 2 → ({⟨1, 1⟩, ⟨2, 0⟩}‘2) = 0)
11146, 110ax-mp 5 . . . . . . . . . . . . 13 ({⟨1, 1⟩, ⟨2, 0⟩}‘2) = 0
112109, 111eqtri 2844 . . . . . . . . . . . 12 (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘2) = 0
113107, 112syl6eq 2872 . . . . . . . . . . 11 (𝑗 = 2 → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) = 0)
114113, 103oveq12d 7174 . . . . . . . . . 10 (𝑗 = 2 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = (0 − 0))
115114, 78syl6eq 2872 . . . . . . . . 9 (𝑗 = 2 → ((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) = 0)
116115oveq1d 7171 . . . . . . . 8 (𝑗 = 2 → (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0) = (0 · 0))
117106, 116neeq12d 3077 . . . . . . 7 (𝑗 = 2 → ((1 · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · 0) ↔ (1 · 1) ≠ (0 · 0)))
11881, 117rspc2ev 3635 . . . . . 6 ((1 ∈ (1...𝑁) ∧ 2 ∈ (1...𝑁) ∧ (1 · 1) ≠ (0 · 0)) → ∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
11927, 118mp3an3 1446 . . . . 5 ((1 ∈ (1...𝑁) ∧ 2 ∈ (1...𝑁)) → ∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
12015, 21, 119syl2anc 586 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
121 df-ne 3017 . . . . . . . 8 ((((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
122121rexbii 3247 . . . . . . 7 (∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ∃𝑗 ∈ (1...𝑁) ¬ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
123 rexnal 3238 . . . . . . 7 (∃𝑗 ∈ (1...𝑁) ¬ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
124122, 123bitri 277 . . . . . 6 (∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
125124rexbii 3247 . . . . 5 (∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ∃𝑖 ∈ (1...𝑁) ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
126 rexnal 3238 . . . . 5 (∃𝑖 ∈ (1...𝑁) ¬ ∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
127125, 126bitri 277 . . . 4 (∃𝑖 ∈ (1...𝑁)∃𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) ≠ (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))) ↔ ¬ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
128120, 127sylib 220 . . 3 (𝑁 ∈ (ℤ‘2) → ¬ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖))))
12929, 29axlowdimlem5 26732 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
13011, 29axlowdimlem5 26732 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
13129, 11axlowdimlem5 26732 . . . 4 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
132 colinearalg 26696 . . . 4 ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)))))
133129, 130, 131, 132syl3anc 1367 . . 3 (𝑁 ∈ (ℤ‘2) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗))) = (((({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑗)) · ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))‘𝑖) − (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))‘𝑖)))))
134128, 133mtbird 327 . 2 (𝑁 ∈ (ℤ‘2) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
135 axlowdimlem6.1 . . . 4 𝐴 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
136 axlowdimlem6.2 . . . . 5 𝐵 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
137 axlowdimlem6.3 . . . . 5 𝐶 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
138136, 137opeq12i 4808 . . . 4 𝐵, 𝐶⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩
139135, 138breq12i 5075 . . 3 (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
140137, 135opeq12i 4808 . . . 4 𝐶, 𝐴⟩ = ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩
141136, 140breq12i 5075 . . 3 (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
142135, 136opeq12i 4808 . . . 4 𝐴, 𝐵⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩
143137, 142breq12i 5075 . . 3 (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
144139, 141, 1433orbi123i 1152 . 2 ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
145134, 144sylnibr 331 1 (𝑁 ∈ (ℤ‘2) → ¬ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567  {cpr 4569  cop 4573   class class class wbr 5066   × cxp 5553   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  cle 10676  cmin 10870  cn 11638  2c2 11693  3c3 11694  cz 11982  cuz 12244  ...cfz 12893  𝔼cee 26674   Btwn cbtwn 26675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-icc 12746  df-fz 12894  df-seq 13371  df-exp 13431  df-ee 26677  df-btwn 26678
This theorem is referenced by:  axlowdim2  26746  axlowdim  26747
  Copyright terms: Public domain W3C validator