Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem6 Structured version   Visualization version   GIF version

Theorem cvmliftlem6 32537
Description: Lemma for cvmlift 32546. Induction step for cvmliftlem7 32538. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = (𝐹𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹𝑀) for the entire interval so that (𝐹𝐼) maps this into 𝐼 and 𝐹𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
cvmliftlem6.1 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem6.2 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Assertion
Ref Expression
cvmliftlem6 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝜓,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜓(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
12 cvmliftlem6.1 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
1312adantrr 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ (1...𝑁))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13cvmliftlem1 32532 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
151cvmsss 32514 . . . . . . . . . 10 ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (2nd ‘(𝑇𝑀)) ⊆ 𝐶)
174adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
18 cvmliftlem6.2 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
1918adantrr 715 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
20 cvmcn 32509 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
212, 3cnf 21854 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
2217, 20, 213syl 18 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝐹:𝐵𝑋)
23 ffn 6514 . . . . . . . . . . . . . 14 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
24 fniniseg 6830 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2522, 23, 243syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))))
2619, 25mpbid 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))
2726simpld 497 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵)
2826simprd 498 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))
29 cvmliftlem5.3 . . . . . . . . . . . . 13 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
30 elfznn 12937 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
3113, 30syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℕ)
3231nnred 11653 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑀 ∈ ℝ)
33 peano2rem 10953 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) ∈ ℝ)
358adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℕ)
3634, 35nndivred 11692 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ)
3736rexrd 10691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ ℝ*)
3832, 35nndivred 11692 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ)
3938rexrd 10691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 / 𝑁) ∈ ℝ*)
4032ltm1d 11572 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑀 − 1) < 𝑀)
4135nnred 11653 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑁 ∈ ℝ)
4235nngt0d 11687 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝜓𝑧𝑊)) → 0 < 𝑁)
43 ltdiv1 11504 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4434, 32, 41, 42, 43syl112anc 1370 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)))
4540, 44mpbid 234 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))
4636, 38, 45ltled 10788 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁))
47 lbicc2 12853 . . . . . . . . . . . . . . 15 ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4837, 39, 46, 47syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
4948, 29eleqtrrdi 2924 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊)
501, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 49cvmliftlem3 32534 . . . . . . . . . . . 12 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇𝑀)))
5128, 50eqeltrd 2913 . . . . . . . . . . 11 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))
52 eqid 2821 . . . . . . . . . . . 12 (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)
531, 2, 52cvmsiota 32524 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇𝑀)))) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5417, 14, 27, 51, 53syl13anc 1368 . . . . . . . . . 10 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
5554simpld 497 . . . . . . . . 9 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀)))
5616, 55sseldd 3968 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶)
57 elssuni 4868 . . . . . . . 8 ((𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ 𝐶 → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐶)
5958, 2sseqtrrdi 4018 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ⊆ 𝐵)
601cvmsf1o 32519 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))) ∧ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇𝑀))) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
6117, 14, 55, 60syl3anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)))
62 f1ocnv 6627 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
63 f1of 6615 . . . . . . . 8 ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))–1-1-onto→(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6461, 62, 633syl 18 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(1st ‘(𝑇𝑀))⟶(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
65 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝜓𝑧𝑊)) → 𝑧𝑊)
661, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 29, 65cvmliftlem3 32534 . . . . . . 7 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐺𝑧) ∈ (1st ‘(𝑇𝑀)))
6764, 66ffvelrnd 6852 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
6859, 67sseldd 3968 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
6968anassrs 470 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ 𝐵)
7069fmpttd 6879 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵)
7112, 30syl 17 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
72 cvmliftlem.q . . . . . 6 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 72, 29cvmliftlem5 32536 . . . . 5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7471, 73syldan 593 . . . 4 ((𝜑𝜓) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
7574feq1d 6499 . . 3 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ↔ (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))):𝑊𝐵))
7670, 75mpbird 259 . 2 ((𝜑𝜓) → (𝑄𝑀):𝑊𝐵)
77 fvres 6689 . . . . . . 7 (𝑧𝑊 → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
7865, 77syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐺𝑊)‘𝑧) = (𝐺𝑧))
79 f1ocnvfv2 7034 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)):(𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)–1-1-onto→(1st ‘(𝑇𝑀)) ∧ (𝐺𝑧) ∈ (1st ‘(𝑇𝑀))) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
8061, 66, 79syl2anc 586 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐺𝑧))
81 fvres 6689 . . . . . . 7 (((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) ∈ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8267, 81syl 17 . . . . . 6 ((𝜑 ∧ (𝜓𝑧𝑊)) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
8378, 80, 823eqtr2rd 2863 . . . . 5 ((𝜑 ∧ (𝜓𝑧𝑊)) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8483anassrs 470 . . . 4 (((𝜑𝜓) ∧ 𝑧𝑊) → (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = ((𝐺𝑊)‘𝑧))
8584mpteq2dva 5161 . . 3 ((𝜑𝜓) → (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
864, 20, 213syl 18 . . . . . 6 (𝜑𝐹:𝐵𝑋)
8786adantr 483 . . . . 5 ((𝜑𝜓) → 𝐹:𝐵𝑋)
8887feqmptd 6733 . . . 4 ((𝜑𝜓) → 𝐹 = (𝑦𝐵 ↦ (𝐹𝑦)))
89 fveq2 6670 . . . 4 (𝑦 = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) → (𝐹𝑦) = (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
9069, 74, 88, 89fmptco 6891 . . 3 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝑧𝑊 ↦ (𝐹‘((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))))
91 iiuni 23489 . . . . . . . 8 (0[,]1) = II
9291, 3cnf 21854 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
935, 92syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶𝑋)
9493adantr 483 . . . . 5 ((𝜑𝜓) → 𝐺:(0[,]1)⟶𝑋)
951, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29cvmliftlem2 32533 . . . . 5 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
9694, 95fssresd 6545 . . . 4 ((𝜑𝜓) → (𝐺𝑊):𝑊𝑋)
9796feqmptd 6733 . . 3 ((𝜑𝜓) → (𝐺𝑊) = (𝑧𝑊 ↦ ((𝐺𝑊)‘𝑧)))
9885, 90, 973eqtr4d 2866 . 2 ((𝜑𝜓) → (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊))
9976, 98jca 514 1 ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  cop 4573   cuni 4838   ciun 4919   class class class wbr 5066  cmpt 5146   I cid 5459   × cxp 5553  ccnv 5554  ran crn 5556  cres 5557  cima 5558  ccom 5559   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355  crio 7113  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  cr 10536  0cc0 10537  1c1 10538  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  (,)cioo 12739  [,]cicc 12742  ...cfz 12893  seqcseq 13370  t crest 16694  topGenctg 16711   Cn ccn 21832  Homeochmeo 22361  IIcii 23483   CovMap ccvm 32502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cn 21835  df-hmeo 22363  df-ii 23485  df-cvm 32503
This theorem is referenced by:  cvmliftlem7  32538  cvmliftlem10  32541  cvmliftlem13  32543
  Copyright terms: Public domain W3C validator